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INFERENCE AFTER STOCHASTIC REGRESSION
IMPUTATION UNDER RESPONSE MODEL'

JAE KwaNG KiM!' AND YONGDAI Kim?

ABSTRACT

Properties of stochastic regression imputation are discussed under the
uniform within-cell response model. Variance estimator is proposed and its
asymptotic properties are discussed. A limited simulation is also presented.

AMS 2000 subject classifications. Primary 62D05; Secondary 62J99.
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1. INTRODUCTION

Consider a finite population of N elements identified by a set of indices U =
{1,2,...,N}. Associated with each unit 7 in the population there is a study
variable y; and a vector x; of auxiliary variables. Let A denote the set of indices
for the elements in a sample selected by a set of probability rules called the
sampling mechanism. Let the population quantity of interest be Oy = f\il Y
or Oy = N~! Zfil y; and let én be a linear estimator of f5 based on the full
sample,

én = Zwiyi- (1.1)
i€A .

To deal with item nonresponse, we define Ar and Aj; as the set of indices
of the sample respondents and sample nonrespondents, respectively. Let R; = 1
if unit ¢ belongs to Ag and R; = 0 if unit 7 belongs to 4,,. For each unit with a
missing value, we impute to complete the data set and denote the imputed value
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as y;. Let 6; denote the imputed estimator, so the imputed estimator of the
mean, using the form of the full sample estimator given by (1.1), is

0 = Z wy; + Z w;Y; - (1.2)

1€EAR 1€AM

In many practical cases, the imputed value y; is written as a predicted value
plus a residual term
y; =0+ € (1.3)

where g; is the predicted value of y; and €} is an imputed residual selected at
random from {é; = y; — §; : © € Agr} in the same cell. When the predicted
value for unit ¢ is §; = xé,@ with B = (ZieAR wixixg)_l ZieAR wiX;y;, we call
the imputation method defined in (1.3) stochastic regression imputation. The
representation in (1.3) is a general form and it covers many commonly used
imputation procedures such as hot deck imputation or ratio imputation (Rao,
1996).

For variance estimation of the imputed estimator, the adjusted jackknife
method is often used. Rao and Shao (1992) introduced the method, applying
it for a weighted hot-deck where the donors are selected with-replacement with
the selection probability proportional to their weights. Rao (1996) discussed the
adjusted jackknife method in detail for various imputation methods, but did not
cover stochastic regression imputation.

Rao and Shao (1992), and Fuller and Kim (2002) studied asymptotic prop-
erties of the random hot deck imputation method in detail under the response
probability model. The response probability model does not require a correct
specification of underlying population distribution and is often preferred to other
model-based approaches (Fay, 1996). Shao and Steel (1999) proposed a unified
approach of variance estimation that can be applicable to the stochastic regression
imputation but their variance estimator is not fully justifiable under the response
probability model. In this paper, we extend the result of Fuller and Kim (2002)
to stochastic regression imputation. A new variance estimator, slightly different
from the adjusted jackknife method, is introduced and its asymptotic properties
are discussed under the response probability model.

The paper is organized as follows. Asymptotic properties of the imputed
estimator is derived under the uniform response model in Section 2. In Section
3, a new variance estimation method is discussed under the uniform response
model. In Section 4, concluding remarks are made with some simulation results.
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2. PROPERTIES OF IMPUTED POINT ESTIMATOR

Rao and Shao (1992) proposed the adjusted jackknife method and examine its
statistical properties under the response probability model. Under this model,
response is treated as a second phase of sampling from the complete sample
and inferences are under the joint distribution of the sampling distribution, the
assumed response mechanism, and the imputation mechanism. The response
model they use assumes the probability of response is constant within each cell
used for imputing. They show that if the missing values are imputed with a
weighted hot deck then the imputed estimator is asymptotically unbiased and
the adjusted jackknife method gives an asymptotically unbiased estimator of the
variance of the imputed estimator. Their development applies for both simple
random samples and stratified multistage sampling with ignorable sample rate.

A key idea that Rao and Shao (1992) used in their development of the adjusted
jackknife can be appreciated by decomposing the imputed estimator. We can
write the imputed estimator as

01 =0n + {El(él) - én} + {él - El(él)} (2.1)

where the expectation Ej () denotes the expectation over the imputation mech-
anism. The variance of the imputed estimator is then given by

Var(éf) = Var(én) + Var(EI(él) - én) + Var(él — E[(é])) (2.2)

provided all the covariance terms are zero. In expression (2.2), the variances are
over the sample design, the response mechanism, and the imputation mechanism.
The first term on the right hand side of (2.2) is the sampling variance, the sec-
ond term is the variance due to response mechanism, and the third term is the
imputation variance due to the selection of a random donor.

Two of the three covariances arising from (2.1) are easily shown to be equal to
zero because the third term §; — El(él) has zero expectation over the imputation
mechanism. Only the term Cov (én, E[(é 7) —én) requires additional investigation.
Rao and Shao (1992) showed that this covariance is asymptotically equal to zero
if two conditions are met when a hot deck is used to impute for missing values.
One condition is that the donors for the hot deck are imputed with probabilities
proportional to their weights. The second condition is that the sampled units
have the same probability of responding within cells. We extend the results given
by Rao and Shao (1992) to a slightly more general setting of stochastic regression
imputation.
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Let d;; be an indicator function that takes the value one if unit ¢ is used as
a donor for missing unit j. The distribution of the d;; is called the imputation
mechanism. The imputed estimator of the population total given by (1.2) can be

written as
br=> wyi+ Y w (Z?j+ > dijéi>- (2.3)

i€AR JEANM i€ApR

An imputed estimator is asymptotically, conditionally unbiased if
ERE[(fr) — 6, =0, (1) (2.4)

Under the within-cell uniform response model, the following lemma gives a
necessary and sufficient condition for an imputed estimator to be asymptotically
unbiased in the sense given by (2.4). This extends the results of Rao and Shao
(1992) by showing the condition is also necessary. It also broadens the imputation
procedures covered to include regression imputation, as defined by (2.3).

LEMMA 2.1. Let the complete sample estimator be of the form (1.1). Assume
the imputed estimator is a member of the linear class defined in (2.3). Under the
within-cell uniform response model, a necessary and sufficient condition for an
imputed estimator to satisfy (2.4) is

. w; w;, if i € Ar, and j € Apgg,
rtay) - | (Zoean ) v )

0, otherwise,

where Apg = ARNU,, Amg = Ap NUy, and the ezpectation is taken with respect
to the imputation mechanism.

The lemma indicates that if the response probability model is the justification
for the imputation procedure, then an unweighted selection method cannot give
an unbiased point estimator (except in the equally weighted case). The result
applies to both the within-cell weighted hot deck and the more general (weighted)
stochastic regression imputation.

When the imputed estimator is the sum of a predicted value and a residual
imputed by a weighted selection (2.5), then the expected value of any unbiased
imputed estimator over the imputation mechanism is

G
El(é]) = Zwig)i + Z Z wifrg_léi =: éFE (2.6)

icA g=1i€ AR,
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where §; is the predicted value of y; defined after (1.3), @ty = (X ;¢ 4, wi)_lx
Yic Ag, Wi is the estimated response probability of group g, and the notation
A =: B means that B is defined to be equal to A. The hypothetical estimator
brg is approximately unbiased for the population mean of y;’s and does not
involves the extra variance due to random imputation. The subscript F'E is the
abbreviation of “fully efficient” in the sense that it has the smallest variance
among the imputed estimator satisfying (2.5).

In the following theorem, we establish the properties of the regression im-
putation estimator given by (2.6) under the within-cell uniform response model.
Appendix B contains a more complete statement and the proof of this theorem.

THEOREM 2.1. Assume the same structure of the estimator and the popu-
lation as in Lemma 2.1 and some regulority conditions as explicitly stated in
Appendiz B. Assume for every i #£ 3, 1,7=1,2,...,N,

P(Ri=1,Rj=1) = P(R; = 1)P(R; = 1) (2.7)

where R; is the response indicator function of unit i. Let the predictor §; of unit
i be of the form §; = x| where B satisfies

B - By =0, (n1?) (2.8)

for some population value By. Then,

brs = 004 32 3 (g B = V) iy + oy~ (2.9
g=1l1i€A,
where O g is an estimator of population mean defined by (2.6), g = Pr(R; =1

i € Ay) is the response probability in cell g, e;q = y; — Yy — (x} — X;)Bo and
()_(g,}_’g) is the population mean of (x;,y;) in cell g.

Theorem 2.1 shows that under the uniform within-cell response model, the
second term on the right hand side of (2.9) has zero expectation. As a result, it
follows that

Egr(0rE) = 0, (2.10)

The approximate equality given by (2.10) implies that the covariance term arising
from decomposition (2.1) is

COV(én,éFE - Gn) = (.
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Since all the covariance terms are equal to zero provided we have a uniform within-
cell response model and the donors are selected with probability proportional to
their weights, the variance given by (2.2) is valid. The first component of variance
in the expression is the ordinary sampling variance of the complete sample. The
second term, the variance due to response mechanism, can be further developed.
Using expression (2.6) and the conditional unbiasedness given by (2.10), this
variance is

G
Var(éFE — én) = E, [VarR{ Z Z (w!‘]‘lRi - l)wieig}]. (2.11)
g=1i€A,
By the independence assumption of (2.7) and the fact that the variance of R; is
7g (1 — my), the variance reduces further to

Var(0rg — 0n) { Zw (1—mg) Z w?e Zg} (2.12)
€A,

Expression (2.12) makes it clear that the response probabilities and the weighted
residuals are the key factors that determine the variance due to response mech-
anism. If the m, are all close to unity, then the variance will be close to zero.
On the other hand, response probabilities close to zero will make the variance
due to response mechanism large. The residuals also affect the variance. If the
imputation model is good in the sense that the predicted values are close to the
actual values, then the sum of the squared weighted residuals and the variance
due to response mechanism will be small.

3. VARIANCE ESTIMATION

We now consider variance estimation. Under complete response, let a repli-
cation variance estimator be

V(0a) = (0P = 8,)? (3.1)
k=1
where é,(lk) is the k' estimate of Oy based on the observations included in the
kth replicate, L is the number of replicates, and ¢ is a factor associated with
rephcate k determined by the replication method. When the original estimator
6y, is a linear estimator of the form (1.1), the k*» replicate of 6, can be written

5 = 3wy, (3:2)

1€A
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(k)
1
For example, consider a simple random sample of size n with w; = n~!. Then,

where w; ’ denotes the replicate weight for the it unit of the k" replication.

a replication variance estimator is the jackknife variance estimator defined by
L=n,c;=n"1(n-1), and wgk) =(n-1)"tifi#k and wgi) = 0.

For the stochastic imputation estimator satisfying (2.5), recall that the total
variance can be written as

Var(éj) = Var(éFE) + Var(éj - éFE) (3.3)

The two terms can be estimated separately. The first term, the variance over the
sampling mechanism and the response mechanism, can be estimated by

L
VFE = ch (ég% — éFE)Q (3.4)
k=1
where G
0% =S wFg+3 S w® (3E) e (3.5)
icA 9=1i€Apr,

~(k k)y—1 k
and Ws(z )= (ZieAg “’z( )) ZiEARg “’z(' )
The following theorem shows that Vpg in (3.4) does estimate the variance of
Org. The proof of the theorem is given in Appendix C.

THEOREM 3.1. Let the assumptions of Theorem 2.1 hold. Assume a repli-
cation variance estimator V(8,) for the complete sample of the form (3.1) with
L = O (n) and that for a y with bounded fourth moments, the replicates satisfy

cr (6% — én)?' < ¢n~War(6,) (3.6)

for allk and some (i, k = 1,2,..., L, where (; are random variables with bounded
fourth moments. Then, the replicates defined in (3.5) satisfies

0%). — b = 6

+§G: (0 - wi) (&‘Qeif’*"p(n'l) (3.7)

g

where e;y = y; — Y, — (x} — X|) B, and (X,,Y,) is the population mean of (x;,y;)
mn cell g.
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If the sampling rate N~'n is ignorable, then the replication variance estimator

defined in (3.4) satisfies
E(Vrgp) = Var(fpp) + op(n™") (3.8)

where the ezpectations are takes over the joint distribution of the sampling mech-
anism and the response mechanism.

Condition (3.6) is satisfied for the standard jackknife variance estimator. Us-
ing (3.7) in conjunction with (2.9), we can re-express the replicate variance esti-
mator (for Org) as

L
ch(ég% ‘éFE)Q (3.9)
k=1
L R o L G R. 2
= ch(@(lk) —0,)" + ch{ Z Z(wgk) — w;) (—Z - 1) eig}
k=1 k=1 g=licA, g

+(Cross Product).

The first term on the right hand side estimates the sampling variance, the sec-
ond term estimates the conditional variance of 25:1 D ic 4, Wi (wg‘ 1R; — 1) ey,
conditional on the values of R; in the population. By (2.9), the second term
estimates the conditional variance of g — 6,. The cross product term in (3.9)
has zero expectation under the uniform within-cell response model. The condi-
tional mean E(éFE — b, | Ri, Ry, ..., Ry) has variance of order N~!. Shao and
Steel (1999), and Fuller and Kim (2002) discussed the estimation of the variance
for the conditional mean E(éFE -6, | R1, Ry,...,Ry). If the sampling rate is
ignorable, then the variance term can be safely ignored.

It is of interest to compare the proposed variance estimator to the variance
estimator proposed by Shao and Steel (1999). Under ignorable sampling rate,
Shao and Steel (1999) suggested linearizing the imputed estimator treating all the
R;’s as fixed so that it can be written as ), , w;{; for some &; and then applying
the standard variance estimator to the linearized form with &; substituted by &;
computed from the respondents. The linearization step is essentially the same as
Theorem 2.1, §pp = Yica wi&; where & = x;8y + &g + W;lRi (e; — &4) for unit
1 in cell g. However, the variance estimation step is different. Shao and Steel
(1999) suggested using a substitution & of & in applying the standard variance
formula. A substitution estimator of £; is

& = Girg + (xi — Xpg)' B+ 7, Ri(yi — Grg — (xi — %Ry)' B)
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where

(URrg, XRg) = ( > wz) > wi (i, x:)

1€ARy i€ARy
and g = (3e4, wi) Y A, Wi 15 the estimated response probability for cell
g. The Shao-Steel variance estimator for frg can be obtained by applying the
complete sample variance estimator to éz- in the sample.

Now we consider the estimation of the second term in (3.3), the imputation
variance. Conceptually, the imputation variance can be unbiasedly estimated by
(éI — GAFE)2 because the conditional expectation of 91 — éFE is equal to zero.
However, the degrees of freedom for estimating the imputation variance will then
be only one. One might increase the degrees of freedom by repeatedly applying
the given imputation mechanism independently M > 1 times. This is essentially
the idea of multiple imputation where the imputation variance is estimated by
M~'By = M"Y (M ~1)"' 530, (61— Or,m)? when 87 pr = M~ 5L, 67 is the
point estimator in use and 6; +t is the imputed estimator based on the tth repeated
application of the given imputation mechanism. Thus, for single imputation 91,
the variance could be estimated by Vip + B M-

Another way of increasing the degrees of freedom, instead of repeating the
stochastic imputation, is also possible if we estimate the imputation variance
separately within a cell. That is, the imputation variance can be estimated by

=" (brg — bpp,)’ (3.10)

g=1

where 919 and ép Eg are the portion of 6 ; and Op E, respectively, that belong to cell
g. Since 6 14 1s conditionally unbiased for Op Eg, Where the conditional expectation
is over the imputation mechanism, the variance estimator in (3.10) is unbiased for
the imputation variance for all stochastic regression estimators satisfying (2.5).
The variance estimator (3.10) is valid whether the imputation mechanism is with-
replacement selection or without-replacement selection. Thus, we do not need to
specify full imputation mechanism to compute Vimp in (3.10).

If the number of cell G is not large enough, then Vimp in (3.10) can be unstable
and we may need to calculate the imputation variance explicitly to estimate the
variance. Note that the imputed estimator satisfies '

G
01 — rp = Z Z Z wj {dij — Er (dij)} &

9=1i€ARy jEAN,
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where Ej(d;;) is defined in (2.5). Thus, for example, if the imputation mechanism
is with-replacement selection, then

G
V(éI—éFE):E[Z S wi{di; - Ei(di)}’él

g=1 ":EARg JE€AM,

and the imputation variance can be estimated in a straightforward manner.

4. SIMULATION STUDY

The main advantage of the estimators justified under the response model
approach is that we do not have to make a correct specification of the distribution
of y in the sample. To illustrate this, consider a model

Yi=PBo+przi+ P2 (z? —1) +e (4.1)

where z; ~ 11d N (0,1), e¢; ~ iid N (0,0.16), and z; and e; are independent. We
set Bg = 0, B, = 0.5 and B2 = 0.3. The variable z; is always observed but the
probability that y; responds is 0.7. A random sample of size n = 100 is generated.

For imputation, suppose that we adopted a linear regression model as the
imputation model and computed the predictor of unit ¢ by §; = Bo + Brzi, where
Bi, 1 = 1,2, are the ordinary least squares estimates from the simple regression
of y on z. The residuals are randomly drawn by a with-replacement sampling
within each cell. The cells are formed using the z values. For comparison, we
used several values of cell numbers from G =1 to G = 15.

The mean and variance of the point estimators and the relative bias of the
estimators of variance are calculated. The point estimators of the population
mean are all unbiased and are not listed here. Table 1 presents the variance
and the standardized variance of the point estimators and the relative bias of
the variance estimators for each cases. The relative bias of V as an estimator of
the variance of §r is calculated as {Varp(7;)} " {Ep(V) — Varp(jr)} where the
subscript B denotes the distribution generated by the Monte Carlo simulation.

The following conclusions can be drawn from the simulation.

1. All the point estimators are unbiased because the assumption of within-cell
equal response probability holds for all cases.

2. There are differences in the efficiency of the point estimators. The variance
of the point estimator is larger for smaller number of imputation cells. This
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TABLE 1 Variance and standardized variance of the point estimators and relative Bias (%) of
the variance estimators (10,000 samples)

Number of Cells | Variance | Std. Var. | Relative Bias (%)
1 0.008575 100 1.73
3 0.007981 93 3.14
5 0.007693 90 2.88
7 0.007528 88 3.17
9 0.007446 87 3.64
11 0.007310 85 5.00
13 0.007206 84 6.33
15 0.007269 85 5.37

is consistent with our theory in the sense that the variance term in (2.12)
will be solely determined by e?g in our simulation setup. Note that the
€y can be written as an cell-mean adjusted form e; — &g, the error from
the imputation model minus its cell mean. Thus, the improvement will be
substantial if the magnitude of the original error is large and less variable
within each cell.

3. The reduction of the variance is not a linear function of G. In Table 1, the
reduction is not substantial for large G. This is because there is a lower
bound on the variance of imputed estimator. Note that, in the simulation
setup, the variance of y is decomposed as

Var(Y;) = Var(Bo + Siz;) + Var(ﬁz(:v? — 1)) + Var(e;).

The first term in the right side of the above equation is the variance of the
systematic part we can catch from the imputation model. The third term
is the variance of the pure error term that we can never catch even if the
imputation model is equal to the true model. The second term, the variance
of By (:1:12 —1), represents the magnitude of difference between the imputation
model variance and the true model variance. When G = 1, the second term
contributes to the imputation model variance so that, conditional on the
number of respondents,

Var(f; | r) = n~1B2 + (262 +0.16) {r" 1+ n 2 (n — )}
= 0.00838.

If we use multiple imputation cells suitably, the contribution of the impu-
tation model variance will be reduced. The lower bound of the imputed
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estimator among all class of linear unbiased estimators is

inf Var(; | ) = n"}(B% + 28%) 4+ 0.16 r~!
= 0.00659

where the infimum was taken over all unbiased linear estimators of the mean
of y.

4. There is a slight bias of the variance estimator. The bias is essentially
a type of ratio bias and will be negligible for large sample size. In fact,
we actually increased the sample size to n = 200 and found that all the
relative biases are within 1% in absolute values. However, for a moderate
sample size, when there are many imputation cells relative to the number
of respondents, the bias for the variance estimators will not be negligible,
as is the case with G > 10 and n = 100 in Table 1.

Imputation cell is often justified as a method of reducing the nonresponse
bias of the imputed estimator. This simulation shows that a suitable choice of
imputation cells also make the point estimator efficient. Generally speaking, if
the number of imputation cells are large, the point estimator is more efficient but
the variance estimator will be more biased. Thus, there is a trade-off between
the efficiency of the point estimation and the accuracy of the variance estimation
in choosing a suitable number of imputation cells. Eltinge and Yansaneh (1997)
also discuss the issue. The choice of optimal number of imputation cell is not
discussed here and will be a topic of future research.
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APPENDIX

A. Proof of Lemma 2.1

Under the uniform within-cell response model, the response probability is
constant within a cell. We denote this probability as mg = Pr(i € Agry | 1 € Ag).
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From (2.3),

EREi(6; - 6,) = EREI{ > wi(l — Ry)Redgiéy — _ wil - Ri)éz’}

i€A keA icA
G
=Y (1-m) >, ER(ék){ > wimg By (dys) — wk}-

Hence, for the quantity to be equal to zero for any y-variable we need ), A, { wy X
ﬂgE[(dki)} — wg = 0. This implies that E(d;;) must be proportional to w; for
and j in the same cell and E(d;;) must equal zero if i and j are in different cells.
This prove that (2.5) is a necessary condition. The sufficiency part is proved in
Theorem 2.1.

B. Assumptions and proof of Theorem 2.1

ASSUMPTIONS. Assume a sequence of finite populations as described in Isaki
and Fuller (1982). Define (x;,y;) to be a vector of auxiliary variables and an
outcome variable defined on the full population and assume each of these variables
have bounded fourth moments. Assume the population consists of G mutually
exclusive and exhaustive cells, where N, is the population size, ny is the sample
size, and 7, is the number of respondents in cell g. Assume

KiG™' < N7!N, < K;G™!  forall g, (B.1)

G < K3n?, (B.2)

Ky < nw; < K, (B.3)

K¢ <mg forall g, (B.4)

where Ky, Ks, ..., K¢ are fixed positive constants, 0 < A < 0.5, 7y is the common

response probability in cell g, and the w; is the weight of unit ¢. Assume the
complete sample estimator §, is unbiased for the finite population total and
satisfies

Var(8,) < Ky Var(Ospsn) (B.5)

for a fixed Ky for any y with bounded moments and fg RS, is the estimator of
# based on a simple random sample of size n.
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ProOOF OF THEOREM 2.1. The difference between estimator (2.6) and the
full sample estimator is

b= E (50 (o

g=1 “i€Ay i€Ag
x{ ( > wivrg_lRiéi) — ( > wiéi)} (B.6)
i€A, i€ A,

where R; is the response indicator function of unit ¢, 74 is the unknown response
probability in cell g, and é; = y; — §;. In order to work with means, we let w; be
the inverse of the initial selection probability divided by N. Now

E( > w) = E( > wglRiwi> =Zng,  (BY)

1€Ag €A,

{e(5w)) =

w) = »
( Z m; wiR; e1g> -1 Z eig =1 ENg, (B.9)
i) =

N7YN, =: Zng, (B.8)

i€A, €Uy

B 2w

i€Ag

(B.10)

where Zn, is the fraction of the population in cell g and e;y = y; =Y, +(xi—%4)' By
with 8, = E(B). Because the w; are bounded by fixed multiples of n™1,

E(ZAwf) 0 (G~n71). (B.11)
i€A,

Therefore, by the assumption that the variance of an estimator of a population
mean is O(n™1),

V( > wi(l,eig,x;)) =0(G7'n7Y), (B.12)

i€ A,

V( Z wmg—lRi(l,eig,x;)) = V( Z wi(l,eig,x;))
€A, i€Ay
+E{ Z ﬂg(l _ﬂg)ﬂg wy (1 €ig, X )(1 €ig, X z)}
i€ A,

=0 (G"'n7). (B.13)
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Let
-1 ~ ~1 o - - - =
( E wy, E T, wiR, E w;€;g, Zﬂg wiRieig> = (%41, 292, €41, €92)
i€A, €A, i€ A, €A
and
-1 -1 _ — _
( E wiXi, E my wiRx;, E W;iesg, Z T, wiRieig) = (Xg1,Xg2, Ug1, Ug2)-
icA, i€A, icAg i€A,

Since é; = e;q — xi(ﬁ — By), we have €;1 = Gg1 — x 1(B - B,) and €g2 = Ugp —
%/5(B — By). Using (2.8) and (B.13), we have

Var(ég2) = Var(iig2){1 + o(1)}
=0 (G 'n7Y) (B.14)
and, similarly, by (B.12),
Var(gs) = O (G™'n71). (B.15)
Then by (B.12), (B.13), (B.14), and (B.15),
(Zg15 292, €g1, €g2) = (ENg> ZNgs ENgrENg) + Op (G—l/Qn_1/2>

and
Eng = Ny TN = 0,(G).
Then

G
gFE = ZZ 1Z 2 egg 691) (Blﬁ)

and by a Taylor expansion,

Zg175 (8g2 — 8q1) = {1+ 2y (%, — Z2) } (B2 — Eg1) + Op(GY/2n=3/2)

= g3 — €g1 + Op(n1). (B.17)
Because the estimator is defined to have moments,
G

Ore =600 = > > wi(my;'Ri — 1)é; + 0, (G -n7) (B.18)

g=licA,

and
X G
BFE =60, + Z _1Ri — 1)wieig. (Blg)
g:1 zE g

By Assumption (B.2), G = 0(n~1/2) and the result is established. O
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C. Proof of Theorem 3.1

We first write the 9(;])3 as

G (k)
6 = Z{ i T % (%) — X B)} (C.1)
2

g9=1 g

where

(X§§)7Xg§)’N1(§)v 25)’Y(k Z w; Xl, W;lRin, 1, 7!' Rla Ty leyi)'
i€Ay

By Assumption (3.6), the full sample replication deviate for the mean satisfies
69— 6, = 0, (n"Y).

We proceed by taking the Taylor expansion,

Oy — bre
=2 [ Xig) + 1g{Y(k Yoy — B'(X3,) - Xag)}}
9=1
Z [Y?g NXI 2 {(Nl(];) - ng) ng (NQ(I;) N2y)}]
g=1 29 29
+0, (G-n7%).
Thus, by (2.8), after some algebra,
60y — Orp
= ZG: {50 (k) Xig) + ZE?__—__Z_(_QB_E(NI(:) _ng)}
=1 9
. Y ng,Bo

N N
+ Z :Z {YQUC) Yag — Bo (X3 (k) — Xay) —
g=1

() - ) |

Ngg
+op(n7h).

The proof is completed by noting that the ratio ]\72;1]\71!, =1+ Op(Gl/Zn—l/z)
and that Ny '(Yag — X Bg) = Y — X! By + 0p(G1/2n112),
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