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CURVATURE BOUNDS OF
EUCLIDEAN CONES OF SPHERES

Y. D. CHAT*, YONG-IL KIM** AND DOOHANN LEE

ABSTRACT. In this paper, we obtain the optimal condition of the
curvature bounds guaranteeing that Euclidean cones over Aleksan-
drov spaces of curvature bounded above preserve the curvature
bounds, by considering the Euclidean cone C'S; over n-dimensional
sphere S of radius r. More precisely, we show that for r < 1, the
Euclidean cone CS7 of S is a CBB(0) space, but not a CBA(k)-
space for any real x € R.

1. Introduction

In the middie of 20th century, based on ideas developed in the study
of the intrinsic geometry of convex surfaces, the theory of spaces of
curvature < k and > k was introduced by A. D. Aleksandrov. Even
though the notion of upper and lower curvature bounds on metric spaces
is defined without assumption of differentiability, it is natural to con-
struct useful tools, which are familiar in Riemannian geometry, defined
by means of intrinsic metric of the space. For instance, the concept of
tangent cone at a point was defined as the Euclidean cone over the di-
rection space at a point in a metric space of curvature bounded above
in the sense of A. D. Aleksandrov. It corresponds to the tangent space
of a point p in a Riemannian manifold, being itself an Rg-domain if p
is a manifold point ([1]). Later Nikolaev showed in [5] that the com-
pleted tangent cone of a space X of curvature bounded above by k, is
an Rp-domain without assumption that X is locally compact or com-
plete. From now on, a CBA(k) space means an Aleksandrov space of
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curvature bounded above by k. Similarly, a CBB(k) space means an
Aleksandrov space of curvature bounded below by k.

The motivation of our study lies in the question whether the Eu-
clidean cones over Aleksandrov spaces of curvature bounded above or
below preserve the curvature bounds. Concerning this question, some
facts are already known, and one of them is the following:

PROPOSITION. X is a CBA(1) space if and only if the Euclidean cone
CX over X is CBA(0). In general, X is a CBA(1) space if and only if
the k-cone C,X is a CBA(k) space.

For details, we refer to [3]. The definition of x-cone is given in Sec-
tion 2 for convenience of reader. The concept of k-cone C,X over the
direction space at a point of X plays an important role in the proof
of Jung’s theorem for CBA(x)-spaces ([4]). On the other hand, for an
Aleksandrov space X of curvature bounded below, we have a similar fact
that X is a CBB(1) space if and only if CX is a CBB(0) space ([2]).

From the proposition above, the Euclidean cone C'S} over n-dimen-
sional sphere Sy of radius r is CBA(0) for » > 1. Hence it is natural
to ask whether there is a number x € R such that the cone CS7 is
CBA(k) for r < 1. This paper gives a negative answer, i.e. for r < 1,
the Euclidean cone CS* is not of curvature bounded above. And we
conclude that the curvature bounds conditions in the proposition above
is optimal by considering the Euclidean cone over S;*. The main theorem
of this paper is the following.

THEOREM. For n-dimensional sphere S} with radius r endowed with
the length metric,

CSris CBA(Q) if r>1,
CSris CBB(0) if r<1.

Furthermore, there is no real x such that CSP* is CBA(k) for r < 1.
In order to show this theorem, we collect the preliminaries about
Aleksandrov spaces in Section 2.

2. Spaces of curvature bounded above

We start off with some preliminaries about CBA(x) spaces. Let X
be a metric space with a metric dx. A geodesic in X is a continuous
map o : I — X such that for some real number £ > 0, every ¢ in the
interval I C R has a neighborhood B(t) C I such that dx(o(t1),0(t2)) =
&e(t1,t2) for all t1,t5 € B(t), where e denotes the standard Euclidean
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distance. If one can take B(t) = I for some t € I, then o is called a
minimizer. The geodesic from z to y will be denoted by o(z,y). For
a real number s, we denote by M, the simply connected surface of
constant curvature k.

A triangle in X consists of three geodesic segments 01,092,053 in X
whose endpoints match. A triangle with edges o;, o2, o3 will be de-
noted by A = A(o1,092,03) and a triangle with vertices v, v, v3 will be
denoted by A = A(vy,vp,v3). For A in X, a triangle A = A(57,73,03)
in M, is called a comparison triangle for A if L(57) = L(0;),1 <1 < 3,
where L denotes the arclength. A comparison triangle exists and is
unique up to congruence if L(o;) + L(o;) > L(oy) and the perimeter

P(A) of A satisfies that P(A) = > L(0;) < % From now on we use
i
21

the convention T =00 for k < 0. One says that A is k-thin, respec-
tively w-fat, if dx(z,y) < dum, (Z,7), respectively dx(z,y) > dun,. (Z,7)
for all points &,y on A and the corresponding points %,7 on A in M
with the standard length metric dps, . Here the corresponding point Z of
x means that if z is on o (v1, v2), then L(o(v1,2)) = L(o(77,%)). For real
k an open subset U of X is called a Ri-domain if for all z,y € U there
is a geodesic o(z,y) : [0,1] — U of length dx(z,y) and all triangles in U
are k-thin. We say that X has curvature at most «, denoted by CBA(x),
if every point z € X is contained in a Rx-domain. On the other hand, a
metric space X is said to have curvature bounded below by &, denoted
by CBB(k), if every point z € X has an open neighborhood B(z) such
that the comparison triangle A in M, for every triangle A(p,q,7) in
B(z) has the following property: For every point z on the minimizer
o(g,r) and for corresponding point z € o(q,7), dx(p,2) > dum,. (P, %),
which is called the Aleksandrov convexity property.
We define the function sin, : R — R by

sin(vikz) 3 >0

N3
sine(x) = T if k=0,
——-—Slnhf/{_i—“) if xk<0.

The Euclidean cone CX over a metric space (X, dx) is homeomorphic
to the quotient space of X x [0, 00) obtained by contracting the set X x0
to a point o, called the vertex of CX. From now on, we denote by o the
vertex of CX. We define the distance function dgx on CX by

d% 4 (Z,7) = s* + t* — 2st cos(min{dx (z, y), 7}),
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where Z = (z, ), ¥ = (y,t) € CX. We denote D, = 7/ /k if K > 0, and
oo if kK < 0. The k-cone Cx X over X is the metric space CxX = {Z =
(z,8) € CX : s < D,/2} endowed with the metric d, defined by

———dn(;’ 9 _ sini——s ¢ + sings singt sin? mm{dX;w,y), uli ,
where T = (z,s) and § = (y,t). Then d(T,y) € [0, D] for all s,t €
[0,D/2] and z,y € X.

In proving the main theorem, we need the following fact ([3]).

sini

PROPOSITION 2.1. If o is a minimizer in X of the length L(o) < 7,
then p~1(o) is a convex subset in CX isomorphic to a Euclidean sector
(without vertex) with the angle L(o).

We say that a metric dx on X is interior if for every z,y € X and for
each € > 0 there exists an e-midpoint z € X, that is, dx(z, 2),dx(z,y) <
%dx(:c,y) + €. It is easy to check that dx is interior at the distances
< 7 if and only if dox is interior. But we remark that although dx is
interior, the restriction dox|xxt of dox to the subspace X x t of CX
may not be interior. For example, let 2,y € R™*! be points such that
e(z,y) > 2r. Let z € R™'. Then without loss of generality we can
assume that e(z, z) > 7. So

dox|xxt((z,1), (z,t) = 2tsin (M;_z)l‘l)
= 2t>t+e¢
= Ldoxlxsal(@t), () + <

for ¢ < t. In this case, if £ is sufficiently small then the e-midpoint of
(z,t) and (y,t) is sufficiently close to the vertex of CX.

ExaMPLE 2.1. Let RP! be a space obtained by identifying « and its
antipodal point —z of z in a circle Sj. Then RP! is CBA(1). However
some couple of points in RP! can get two midpoints in RP!, so that
some ball of radius § may not be a 1-domain. And the cone CRP?! has
bigons in any small ball. Thus CRP! is not CBA(k).

3. Curvature bounds of Euclidean cones CS}}

For a real number 7 > 0 and a point = (Z, &) € CS}*—{o}, we define
a function r, from the set X = CS” — {o,z} to itself as follows : For
y=(y,B) € X, let lI(z, 0,y) be a flat {(z,v)}, where Z is on a minimizer
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o(z,y) and v > 0, spanned by oz = {(z,t)|[t > 0} and oy. Then the
point 7(y) is in the flat II(z, 0,y) and satisfies that Z(z,0,7:(y)) =
min{rZ(z,o0,y),n} and dcsr(0,7:(y)) = dcsr(o,y). Here we call o7
the ray emanating from o and passing through z. Then we can easily
check that desr(z,y) = e(z,72(y)) = e(ry(z),y), and then obtain the
following main result.

THEOREM 3.1. For n-dimensional sphere S} with radius r endowed
with the length metric,

CS! is CBA(0) if r>1
CSrisCBB(0) if r<1.

Furthermore, there is no real  such that CS} is CBA(k) for v < 1.

In the case that r > 1, CS” is CBA(0) from the proposition in
Section 1, since S” is a CBA(1) space. We start off the proof of Theorem
3.1 with the followings. For three points z,y,2 in X we say that z is
between z and y if dx(z,2) + dx(z,y) = dx(z,y). And z is called a
midpoint of z and y if dx(z, 2) = dx(z,y) = %dx(a:,y).

LEMMA 3.1. If z is between z,y € CS?, then z is in the interior of
the angle Z(z,0,y).

2

Proof. Let r > 1. Put z = zrz(y) N O(FTH) (y). Then
(1) dCS{J (33, 7'3:_1(2)) + dC’S,Z1 (T:I:_l(z)? y) = e(xa Z) + e(z,rx(y))
= e(z,72(y))

= dcsp(z,y).

Here (1) comes from the fact that dogn (r;72(2),y) = e(rs 1 (2), Trp-1(2)
(y)) and

L(rr,-1()(9), 0, re(2) = 7 <1 - ,r,r?) £(z,0,y)

= ;—T——é(w,o, Y)
= /(z,0,7:(¥y)).
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Now let » < 1. Let z be a point on the intersection of the line segment
zrz(y) and orgy(ry(y)). Then
desp(z,y) = e(z,7a(y))
= e(z,2) +e(z,7:(y))
= deosp(@,m:71(2) + elry(rs 71 (2)),v)
= dosp(z, o7 (2)) + dosp (a1 (2), ).
The third equality comes from the fact that
L(z,0,m3(y)) = (r—r%)L(z,0,9)
= r(l1-r)L(z,0,y)
= 1£(y,0,ry(ra""(2)))-
This completes the proof. g

From the routine computations:
{ dosp (2,271 (w)) = e(z,w) = je(z,r2(y)) = 3dosp (2, y)
dosp (r: " (w), y) = e(w,12(y)) = ze(z,72(y)) = 3desy (2. 9),
we obtain the following result.

COROLLARY 3.1. Let w be a point on zr;(y) that bisects the Eu-
clidean length of xr;(y). Then r,~'(w) is a midpoint of z and y.

From Corollary 3.1 we obtain a minimizer on C'S} by connecting
the midpoints as follows. Let zg,z1 € CS;. Then we can choose
the midpoint ! of g and z1. Then by the similar procedure, we

have the mldpomts 1 of zo and T1, T3 of T3 and z1, and so on.
Now it is easy to find a minimizer obtalned by connectmg those points
e P L2 TR T -+ ,x1, since S} is complete.

Now we first show that if » < 1, then CS} is not CBA(x) for any
real k. Let A be a triangle such that the perimeter P(A) < 277, where

T =(z,s),7 = (y,t),z = (2,u) € CS; — {o}.
Let A be a comparison triangle for A on S. Since r < 1, we can
choose a comparison triangle A for A on S2. Let Z be a point on the
ray 0% such that e(0,ZT) = s and let § be a pg_i)nt on the ray o_1>7 such
that e(o,7) =t and let Z be a point on the ray oz such that e(0,Z) = u.
Then A is a Euclidean comparison triangle of A. Let @ be a point on

yry(Z) that bisects the length of Fry(Z) and let w be a corresponding
point of W on A. Then for a corresponding point @ of w on A we get
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dgp(z, w) > dgz (Z,w). Choose a point ¥ on a minimizer ¢(Z,w) such
that dgs (£,7) = dgrn(x,w). Then trivially the ray P passes through the

interior of the triangle 2A. So for a corresponding point @ of w on A
desr (T, W) > e(T,w). So we have the result.

Finally we complete the proof of the theorem by showing that C'S;
is CBB(0) for r < 1. For each x € CS? — {0}, there exists an open ball
B(z,¢) about z and of radius € such that for any triangle in B(z,¢) is
0-fat by Proposition 2.1. Now we assume that z = 0. Choose a triangle
A(z,y,2) in B(o, 3). First assume that A(z,y,2) does not contain the
origin 0. Then we have the result from the fact that A(z,y,z) has a
triangulation consisting of each triangle such that the perimeter < 2mr.
Secondly, if A(z,y, z) contains the origin o, say A(z,y, 2) = Ao, z,y).
From the same reason above we assume that Z(z,0,y) < w. Without
loss of generality we assume that dcgr(0,z) < dgsn(o,y). Choose a
point z € oy such that dcsr(o,2) = dcsn(o,z). Then for a triangle
A(z,y, z) we get the result. Now it remains to prove the result for a tri-
angle A(o,z, z). We know that Ao, z,r;(2)) is a Euclidean comparison
triangle for A(o, z, z). Let w € xry(2). Then r,~!(w) is a corresponding
point of w on o(z, z). Then trivially

dcsr (o, re " Hw)) > e(o,rz~(w)),

for a corresponding point r;~!(w) of 7~} (w). So the proof is complete.
O
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