GENERALIZATION ON PROPER G-SPACES FOR LOCALLY COMPACT LIE GROUP G

HYANG-SOOK LEE

ABSTRACT. In this paper we study the relation of Euler characteristic with respect to cohomology with compact support in \mathbb{F}_p -coefficient for the fibration of ENR's and generalize some properties on proper G-spaces for locally compact Lie group G.

0. Introduction

Let G be a Lie group. Then the transformation group theory on compact G has been developed with lots of properties. If G is allowed to be anything more general than a compact group, theorems about G-spaces become extremely scarce. To recover some theory on spaces with noncompact group action, there must be some restriction on Gaction. The Cartan G-spaces are those G-spaces which make many statements valid which apply when G is compact ([8]). In this paper we generalize some properties which are also satisfied on compact case for Cartan G-spaces and more restrictive proper G-spaces where G is a locally compact Lie group. We also study the property regarding ENR's (Euclidean Neighborhood Retract) and then we show that if X is a proper G-ENR, then the orbit space X/G is an ENR. This paper is organized as followings. In section 1, we study the relation of Euler characteristic with respect to cohomology with compact support in \mathbb{F}_{n} coefficient for the fibration of ENR's. In section 2, we generalize some properties on proper G-spaces for locally compact Lie group G and apply the proper G-action to ENR's.

Received March 20, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 22D05, 57S20.

Key words and phrases: locally compact Lie group, proper G-action, Burnside modules.

This paper was supported by KOSEF 97-07-01-02-01-5 and partially by the MOST through National R & D Program M10022040004-01G050900310 for Women's Universities.

1. Property of Euler characteristic of ENR's

Let X be an ENR (Euclidean Neighborhood Retract) and X^+ denotes its one point compactification. Let $\chi_c(X)$ denote the Euler Characteristic of X with respect to the cohomology with compact support in coefficient ring R. In this section we give the relation of Euler characteristic with respect to cohomology with compact support in \mathbb{F}_p -coefficient for the fibration of ENR's.

LEMMA 1.1. Let X and Y be ENR's. Then, for disjoint union of X and Y,

$$\chi_c(X \sqcup Y) = \chi_c(X) + \chi_c(Y).$$

Proof. It is trivial.

We set

$$\widetilde{\chi}(X^+) = \sum_{i=0}^{\infty} (-1)^i \text{ rank } \widetilde{H}^i(X^+; R).$$

LEMMA 1.2. Let X and Y be ENR's. Then

$$\chi_c(X \times Y) = \chi_c(X) \cdot \chi_c(Y).$$

Proof. This is obvious from the Kunneth formula for the Alexander Spainer cohomology with compact supports;

$$H_c^n(X \times Y; \mathbb{F}_p) \approx \sum_{p+q=n} H_c^p(X; \mathbb{F}_p) \otimes H_c^p(Y; \mathbb{F}_p).$$

We also show the result by the following way.

For the Euler Characteristic of $X \times Y$ with compact support,

$$\chi_c(X \times Y) = \widetilde{\chi}(X^+ \wedge Y^+).$$

Now we have

$$\widetilde{H}^*(X^+ \times Y^+; R) \cong \widetilde{H}^*(X^+; R) \oplus \widetilde{H}^*(Y^+; R) \oplus \widetilde{H}^*(X^+ \wedge Y^+; R).$$

Hence

$$\widetilde{\chi}(X^+ \times Y^+) = \widetilde{\chi}(X^+) + \widetilde{\chi}(Y^+) + \widetilde{\chi}(X^+ \wedge Y^+)$$
$$= \chi_c(X) + \chi_c(Y) + \chi_c(X \times Y).$$

However

$$\widetilde{\chi}(X^+ \times Y^+) = \widetilde{\chi}(X^+) \cdot \widetilde{\chi}(Y^+) + \widetilde{\chi}(X^+) + \widetilde{\chi}(Y^+)$$
$$= \chi_c(X) \cdot \chi_c(Y) + \chi_c(X) + \chi_c(Y).$$

Therefore

$$\chi_c(X \times Y) = \chi_c(X) \cdot \chi_c(Y).$$

If X is an ENR, $\chi_c(X)$ may not be defined if $H_c^*(X; \mathbb{F}_p)$ is infinite dimesional.

PROPOSITION 1.3. Let E and B be ENR's and $f: E \to B$ be a fibration with typical ENR fiber F. Assume $\chi_c(F)$ and $\chi_c(B)$ are defined. Then $\chi_c(E)$ is defined and

$$\chi_c(E) = \chi_c(F) \cdot \chi_c(B),$$

where χ_c is the Euler Characteristic with respect to cohomology with compact support and coefficients are finite field \mathbb{F}_p .

Proof. Since ENR's are locally contractible, we use Alexander Spainer cohomology. Then the fibratin $f:E\to B$ gives a Leray spectral sequence with E_2 -term

$$E_2^{p,q} = H_c^p(B; H_c^q(F)),$$

where the coefficient $H_c^q(F)$ are considered as a local coefficient system on B. If this local coefficient system is trivial, then

$$H_c^p(B; H_c^q(F)) \cong H_c^p(B) \otimes H_c^q(F)$$

and

$$\chi_c(E_2) = \sum_{p,q} (-1)^{p+q} dim E_2^{p,q}$$

$$= \sum_{p,q} (-1)^{p+q} dim (H_c^p(B) \otimes H_c^q(F))$$

$$= \sum_{p,q} (-1)^{p+q} dim (\widetilde{H}^p(B^+) \otimes \widetilde{H}^q(F^+))$$

$$= \widetilde{\chi}(B^+) \cdot \widetilde{\chi}(F^+)$$

$$= \chi_c(B) \cdot \chi_c(F).$$

Since $E_2^{p,q}=0$ if p and q are large enough and the same is true of $E_r^{p,q}$ for any r. $E_\infty=E_r$ for large r and

$$\chi_c(E_{\infty}) = \chi_c(B) \cdot \chi_c(F).$$

Now we have

$$dim[H^n(E)] = \sum_{s+t=n} dim E_{\infty}^{s,t},$$

and hence

$$\chi_c(E) = \chi_c(E_\infty) = \chi_c(B) \cdot \chi_c(F).$$

If the local coefficient system is nontrivial, we reduce the system to be trivial by using finite covering over B since $H^q_c(F; \mathbb{F}_p)$ is finite. Let $\pi_1(B) = G$ and $\rho: G \to GL_n(\mathbb{F}_p)$. If $K = Ker\rho$, then G/K is a finite covering of $\widetilde{B} \to B$ where \widetilde{B} is a universal covering space corresponding to K. Hence $\chi_c(\widetilde{B}) = N \cdot \chi_c(B)$ where |G/K| = N ([2] 5.3.3). For the induced covering \widetilde{E} over E, $\chi_c(\widetilde{E}) = N \cdot \chi_c(E)$. Now $\chi_c(\widetilde{E}) = \chi_c(F) \cdot \chi_c(\widetilde{B})$ by trivial local coefficient system since $\pi_1(\widetilde{B}, b_0)$ acts trivially on $H^q_c(F, \mathbb{F}_p)$. Hence $N \cdot \chi_c(E) = \chi_c(F) \cdot N \cdot \chi_c(B)$. Therefore

$$\chi_c(E) = \chi_c(F) \cdot \chi_c(B).$$

2. Proper action of locally compact Lie group

Now we study some properties on spaces with noncompact group action. We consider a complete regular space X with a fixed action on G. If G is a compact Lie group then a lot of general theory of G-spaces has been developed. For the noncompact case we need to give some condition on G-space for which theory can be applied reasonably. For our purpose, we study proper G-space for locally compact Lie group G. Then many of the statements which hold when G is compact are valid in this case ([8]).

Let G be a locally compact Lie group with identity e which acts on complete regular space X. We recall some definitions and facts from [8]. We define the subsets of G

$$((U,V)) = \{ g \in G \mid gU \cap V \neq \emptyset \},\$$

where U and V are the subsets of G-space X. If U and V are the subsets of a G-space X then we say that U is thin relative to V if ((U, V)) has compact closure in G. If U is thin relative to itself then we say that U is thin.

DEFINITION 2.1. A G-space X is $Cartan\ G$ -space if every point of X has a thin neighborhood.

DEFINITION 2.2. A subset S of a G-space X is a small subset of X if each point of X has a neighborhood which is thin relative to S. A G-space X is proper if each point of X has a small neighborhood.

We state some important relation between Cartan G-space and proper G-space.

PROPOSITION 2.3. ([8]) A G-space X is proper if and only if X is a Cartan G-space and X/G is regular.

Now we prove the following properties on Cartan G-space for locally compact Lie group G.

PROPOSITION 2.4. If X is a locally compact space then X/G is locally compact.

Proof. The orbit map $\pi: X \to X/G$ is open. For $x \in U \subset X$, let \overline{U} be a compact closure of U. Then $\pi(x) \in \pi(U) \subset \pi(\overline{U})$, where $\pi(\overline{U})$ is a compact closure containing $\pi(x)$.

PROPOSITION 2.5. ([8]) If X is a proper G-space and N is a closed normal subgroup of G, then X/N is a proper G/N-space.

PROPOSITION 2.6. If X is a proper G-space and N is a closed normal subgroup of G, then X^N is a proper G/N-space.

Proof. Since X is a proper G-space, X/G is regular by Proposition 2.3. For every $x \in X$, x has a thin neighborhood U such that ((U,U)) is relatively compact in G. Recall G/N acts on X^N by (gN)(x) = gNx = gx. Then G/N action on X^N is equivalent to G-action on X^N and every subspace of a regular space is regular, and hence $X^N/(G/N)$ is regular. To show for every $x \in X^N$, x has a thin neighborhood U^* such that $((U^*,U^*))$ is relatively compact in G/N, we take $U^* = \{x \in U \mid nx = x \text{ for every } n \in N\} = U \cap X^N$ which is open in X^N . Moreover if p is the canonical map of G onto G/N, it can be easily checked $p((U,U)) = ((U^*,U^*))$ since

$$\begin{split} ((U^*, U^*)) &= \{gN \mid gNU^* \cap U^* \neq \emptyset\} \\ &= \{gN \mid gN(U \cap X^N) \cap (U \cap X^N) \neq \emptyset\}. \end{split}$$

PROPOSITION 2.7. ([8]) Let X be a proper G-space. If X is separable metric then X/G is also separable metric.

Now we apply some property to G-ENR for locally compact Lie group G. We define a G-ENR(Euclidean Neighborhood Retract) to be a G-space X which is (G-homeomorphic to) a G-retract of some open G-subset in a G-module V. If we have no group G acting we simply talk about ENR's.

PROPOSITION 2.8. ([3, 4]) If $X \subset \mathbb{R}^n$ is locally (n-1) connected and locally compact then X is an ENR.

A separable metric space of dimension $\leq n$ can be embedded in R^{2n+1} [5]. Hence a space is an ENR if and only if it is locally compact, separable metric, finite dimensional and locally contractible.

Now we give the example of the proper action on a space.

EXAMPLE. We give the action of Z/p^{∞} on Z/p^{∞} by left translation. Then this is the proper action ([3], p.31). To show this is Z/p^{∞} -ENR, we need to check it is locally compact, separable metric, finite dimensional and locally contractible. Generally the following fact is known in [2], [3], [5] and point set topology. Every discrete space is locally compact and locally contractible. Every contractible discrete space is separable. Finite or countable space is 0-dimensional space hence finite dimensional space. Therefore Z/p^{∞} is a proper Z/p^{∞} -ENR.

The idea of the proof of the following result is coming from [3, p.159].

PROPOSITION 2.9. Let X be a proper G-ENR. Then the orbit space X/G is an ENR.

Proof. Since X is G-ENR, X is a retract of some open G subset U in a G-module, i.e. $X \xrightarrow{i} U \xrightarrow{r} X$ and $r \circ i = id_X$. A retract of an ENR is an ENR. Hence we prove the proposition for X a differential G-manifold and then apply it to the manifold U. Let $\pi: X \to X/G$ be the quotient map. Then X/G is locally compact by Proposition 2.4 and separable metric by Proposition 2.7. By dimension theory [5], $dimX/G \le dimX$. Hence X/G is finite dimensional. To show X/G is locally contractible, given $\bar{x} \in V \subset X/G$, V open, $\pi^{-1}(V)$ is open. Since X is locally contractible, $\pi^{-1}(\bar{x}) = xG$ which is null homotopic. Hence πW is also contractible in X/G. Therefore X/G is locally contractible.

3. Structure of the Burnsid module of the locally compact Lie group

Minami [7] generalized Tom Dieck's Burnside ring of compact Lie groups [2] to the relative case. In this section, we extend the structure of the relative Burnside module for locally compact Lie groups. Let G be a locally compact Lie group of the type $G = F \times L$ where L is a normal subgroup of G. We assume all $F \times L$ -action to be proper. We define A(F, L) to be the set of equivalence classes of proper $F \times L$ -ENR with a free L-action under the equivalence relation

$$X \sim Y$$
 if and only if $\chi_c(X^S/N_LS) = \chi_c(Y^S/N_LS)$

for any $S \subset F \times L$, where $N_L S = N_{F \times L} S \cap L$ acts free on X^S and Y^S so that the following diagrams commute.

$$\begin{array}{cccc} N_LS\times X^S \longrightarrow X^S & & N_LS\times Y^S \longrightarrow Y^S \\ \downarrow & & \downarrow & & \downarrow & \downarrow \\ (F\times L)\times X \longrightarrow X & & (F\times L)\times Y \longrightarrow Y \end{array}$$

Here χ_c is the Euler characteristic with respect to the cohomology with compact support in \mathbb{F}_p -coefficient. Given H < F, a closed subgroup H and $\phi: H \to L$ a homomorphism, $(H, \phi) = \{(h, \phi(h)) | h \in H\}$ is a closed subgroup of $F \times L$. Let C(F, L) be the set of the conjugacy classes of closed subgroups (H, ϕ) .

LEMMA 3.1. (i) Let $F \to E \to B$ be a proper G-fiber bundle such that a closed normal subgroup $N \triangleleft G$ acts trivially on B, then $F^N \to E^N \to B$ is a proper G/N-fiber bundle.

(ii) Let $F \to E \to B$ be a proper G-fiber bundle such that G acts trivially on B, then $F/G \to E/G \to B$ is a proper fiber bundle.

Proof. This can be easily checked by using the local triviality and Proposition 2.5 and 2.6. \Box

THEOREM 3.2. A(F,L) is a free abelian group with basis $[(F \times L)/(H,\phi)]$ for each $(H,\phi) \in C(F,L)$. For any proper $F \times L$ -ENR X with free L-action,

$$[X] = \sum_{(H,\phi)} \chi_c(X_{(H,\phi)}/(F \times L))[(F \times L)/(H,\phi)] \in A(F,L)$$

where (H, ϕ) runs over C(F, L).

Proof. The addition is given by disjoint union and the inverse form of [X] is

$$-[X] = [X \times K],$$

where K is a $F \times L$ -ENR with trivial action such that $\chi_c(K) = -1$.

Now we want to express any $[X] \in A(F,L)$ as a linear combination of $[(F \times L)/(H,\phi)]$ where $(H,\phi) \in C(F,L)$. Since X is the disjoint union of its orbit bundles [3], $X = \coprod_{(H,\phi) \in C(F,L)} X_{(H,\phi)}$, by additivity of the Euler Characteristic

$$\chi_c(X^S/N_L S) = \sum_{(H,\phi) \in C(F,L)} \chi_c(X_{(H,\phi)}^S/N_L S).$$

We consider the fiber bundle

$$F \times L/(H, \phi) \to X_{(H,\phi)} \to X_{(H,\phi)}/F \times L.$$

By applying Lemma 3.1, (i) for $S \triangleleft N_{F \times L} S \subset F \times L$ and (ii) for $N_L S \subset N_{F \times L} S$, we obtain the following fiber bundle

$$(F \times L/(H,\phi))^S/N_LS \to X^S_{(H,\phi)}/N_LS \to X_{(H,\phi)}/F \times L.$$

If we apply Proposition 1.3 to this bundle, we have

$$\chi_c(X_{(H,\phi)}^S/N_LS) = \chi_c((F \times L/(H,\phi))^S/N_LS) \cdot \chi_c(X_{(H,\phi)}/F \times L).$$

Therefore

$$[X] = \sum_{(H,\phi)\in C(F,L)} \chi_c(X_{(H,\phi)}/F \times L)[(F \times L)/(H,\phi)].$$

Next we show $\{[(F\times L)/(H,\phi)]\}$ are linearly independent. Let us assume $\sum_{(H,\phi)\in C(F,L)}a_{(H,\phi)}[(F\times L)/(H,\phi)]=0$ where $a_{(H,\phi)}=\chi_c(X_{(H,\phi)}/F\times L)$. We suppose $\{[(F\times L)/(H,\phi)]\}$ are linearly dependent. We take (H',ϕ') to be maximal among those such that $a_{(H,\phi)}\neq 0$. Then we get

$$0 = \chi_{c}(\sum_{(H,\phi)\in C(F,L)} a_{(H,\phi)}[(F\times L)/(H,\phi)]^{(H',\phi')}/N_{L}(H',\phi'))$$

$$= a_{(H',\phi')} \cdot \chi_c([(F \times L)/(H',\phi')]^{(H',\phi')}/N_L(H',\phi')).$$

But $a_{(H',\phi')} \neq 0$ and $\chi_c([(F \times L)/(H',\phi')]^{(H',\phi')}/N_L(H',\phi')) \neq 0$ since $[(F \times L)/(H',\phi')]^{(H',\phi')}/N_L(H',\phi')$ is finite. This is a contradiction. Therefore $\{[(F \times L)/(H,\phi)]\}$ are linearly independent. Now we claim $[(F \times L)/(H',\phi')]^{(H',\phi')}/N_L(H',\phi')$ is finite. We consider the fiber bundle

$$N_{F \times L}(H, \phi)/(H, L) \cap N_{F \times L}(H, \phi)$$

$$\rightarrow N_{F \times L}(H, L)/(H, L) \rightarrow N_{F \times L}(H, L)/N_{F \times L}(H, \phi) \cdot (H, L).$$

Then the base space $N_{F\times L}(H,L)/N_{F\times L}(H,\phi)\cdot (H,L)$ is finite since $N_{F\times L}(H,\phi)\supset C_{F\times L}(H,L)$ and $N_{F\times L}(H,L)/N_{F\times L}(H,L)\cdot (H,L)$ is finite [4]. Now the total space $N_{F\times L}(H,L)/(H,L)\approx N_FH/H$ is finite.

Therefore the fiber $N_{F\times L}(H,\phi)/(H,L)\cap N_{F\times L}(H,\phi)$ is finite and we have the following relation

$$[(F \times L)/(H,\phi)]^{(H,\phi)}/N_L(H,\phi)$$

$$= N_L(H,\phi) \setminus [(F \times L)/(H,\phi)]^{(H,\phi)}$$

$$= N_L(H,\phi) \setminus N_{F \times L}(H,\phi)/(H,\phi)$$

$$= N_{F \times L}(H,\phi)/(H,\phi) \cdot N_L(H,\phi)$$

$$= N_{F \times L}(H,\phi)/(H,L) \cap N_{F \times L}(H,\phi).$$

This completes our claim.

References

- [1] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- [2] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math. **766**, Springer-Verlag, Berlin, 1979.
- [3] _____, Transformation groups, Walter de Gruyter, Berlin, 1987.
- [4] A. Dold, Lectures on algebraic topology, Springer, Heidelberg-New York, 1972.
- [5] W. Hurewicz and H. Wallman, *Dimension theory*, Princeton Mathematical Series, Vol. 4, Princeton Univ. Press, 1941.
- [6] H. -S. Lee, Induced maps in homology for p-toral compact Lie groups, Topology Appl. 87 (1998), 189–197.
- [7] N. Minami, The relative Burnside ring and the stable maps between classifying spaces of compact Lie groups, Trans. Amer. Math. Soc. 347 (1995), no. 2, 461– 498.
- [8] R. S. Palais, On the existence of slices for actions of noncompact Lie groups, Ann. of Math. 73 (1961), no. 2, 295-323.
- [9] _____, The classification of G-spaces, Mem. Amer. math. Soc., No. 36, 1960.
- [10] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

DEPARTMENT OF MATHEMATICS, EWHA WOMANS UNIVERSITY, SEOUL 120-750, KOREA

E-mail: hsl@ewha.ac.kr