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MOD p HOMOLOGY OF THE DOUBLE LOOP SPACE
OF THE HOMOGENEOUS SPACE SO(2n)/U(n)

Youngat CHol

ABSTRACT. We compute the mod p homology of the double loop
space of SO(2n)/U(n) by the Serre spectral sequence of Hopf al-
gebras. We also obtain the torsion information of the integral ho-
mology.

1. Introduction

Let SO(n) be the group of n x n orthogonal matrices of determinant
1 and U(n) the group of n X n unitary matrices. Let Q*M be the k—fold
loop space of M, that is, the space of all the base point preserving con-
tinuous maps from S* to M. In this paper we study the mod p homology
of the double loop space of the homogeneous space SO(2n)/U(n).

There is a natural energy functional on Q2S0(2n)/U(n) given by
E(¢) = 3 [q |d¢(z)|?dx where ¢ : S? — SO(2n)/U(n) is a map be-
tween Riemannian manifolds. The absolute minima of this energy func-
tional are precisely the space Hol*(S?,S0(2n)/U(n)) of all the base
preserving holomorphic maps from the Riemannian sphere $? = C'| oo
to the homogeneous space SO(2n)/U(n) [4]. Then forgetting the com-
plex structure, we have the natural inclusion Hol}(S?, SO(2n)/U(n)) —
Q280(2n)/U(n) where k € m(022Sp(n)/U(n)) = Z. By exploiting the
inclusion map, we can obtain the homological information of the space
Hol} (5%, 50(2n)/U(n)) from the homology of Q250(2n)/U(n). We
compute the homology of the double loop space of SO(2n)/U(n) from
this point view. Main tool of the computation is the Serre spectral
sequence of Hopf algebras.
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2. Homology of SO(2n)/U(n)

Throughout this paper p always stands for odd primes and the sub-
script of an element means the degree of the element, that is, deg(z;) = i.
There are homology Dyer-Lashof operations, Q;(,—1) on the (n+1)-loop
space )Tt X

Qip—1) Hq(QnHX?Fp) - pq+i(p~1)(Qn+lX5]Fp)

for 0 < ¢ < n when p=2, and for 0 <i < n and i+ q even when p > 2,
and they are natural with respect to (n + 1)-loop maps [3].

The following is well -known. We refer Theorem 6.11 of chapter 3 in
[5] for more detail explanation.

THEOREM 2.1. As an algebra, we have
2k—1

H*(SO@'”)/U(”); Z) = Z[62,€4, ce ,62n—2]/(64k + Z (*1)i€2164k—2i).

From above theorem, we get the following.

COROLLARY 2.2. As an algebra we have
H*(SO(2n)/U(n);Fa) =A (ca,... ,Coan—2),
where A (ca, ... ,Can—2) denotes a graded algebra over Z, with a basis
{egiy - ez, 11 <4y <idg--- <ip <m—1}.
For odd primes p, as an algebra we have

H*(SO(2n)/U(n); Fp) :]Fp[cl"" sen—1]/( Z (—1)icicj)-

i+i=2k,k>1

Since m(SO(2n)/U(n)) = Z, m(2250(2n)/U(n)) = Z. So compo-
nents of the space 2250(2n)/U(n) are labelled by the integer k € Z;
we denote the k component by Q2S0(2n)/U(n). Since each compo-
nent is homotopy equivalent to each other, it is enough to compute the
homology of any component to get the homology of Q250(2n)/U(n).
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3. Mod 2 homology of Q250(2n)/U(n)

We have the following identification: SO(4)/U(2) = S*. Hence we
have

02S0(4)/U(2) = 022 = O*5° x Z.
Therefore we have
H,(Q250(4)/U(2);F2) = F2[Qfz1 : a 2 0],
H,(Q250(4)/U(2);F,) = E(Qp_121: @ = 0) ®F,[8Q8 121 :a>0].
First we consider the mod 2 case.

THEOREM 3.1. H,(Q250(2n+2)/U(n+1);F2),n =2, is

Folzgr : 0 < 4k < n — 2]
@ F2[Qfwaniskss 1 a > 0,0 < 4k < n —4]
®Fa[Qizar :a>0,n—2 < 4k < 2n —2].

Proof. Tt is well-known that

H*(Q()U;Fz) = ]Fz[egi 11 _>_ 1],
H,(Q250/U;F3) = Falys - ¢ > 1],
H,(Q%S0;F2) = E(uait1 : 1> 0]

In the Serre spectral sequence converging to H.(Q3SO/U;F;) asso-
ciated to the fibration

0250 —— Q3SO/U —— QU
we have the following differentials for ¢ > 0, k > 1:

(1 dyiyo(€sit2) = Ugit1,
d(4i+2)2k(€(4i+2)2k) = €4i+2  €(4i+2)2 " " €(4i+2)2k—1 " Udi41 -

Moreover, €2, survives permanently for each ¢ > 1.
Now we consider the Serre spectral sequence converging to H. «(Q3S0
(2n +2)/U(n + 1);Fy) with

E» = H (QoU(n+1);Fy) ® H (Q*SO(2n + 2); F2).
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Since the structures of H,(Q2250(2n);Fs) depend on the congruence
of » mod 4 [2], we should consider four cases. Here we will compute
only one case because the other cases are followed by the same method.

Consider the following fibration:

Q*S0(8n+2) —— Q2S0(8n+2)/U(dn+1) —— QoU(4n +1)
Q280 — Qiso/u  — QU.
We recall the following result in [4].
H,(22S0(8n + 2); F,)

= E(U4k+1 0<k<n—- 1) ®]F2['U8n+8k+6 0<k<L n—2]

® Fo[Quantari1:a>0,0<k <n—1]

® F2[Qiwsntok+1:0>0,0 <k < 4n —2 and k # 1mod4]

&® E(Q?U)gn_l ra > 0) &® ]Fz[Qg'U]_Gn_Q ra > 0] .

Recall the following homology in [1].
H*(Q()U(4’I’L + 1),]F2) = ]F2[621' 11 <1< 47’1,] .

From (1) and the naturality of differentials, we get the following dif-
ferentials:

d(eqiya) = ugiy1, 0<i<2n—1,
d(e(air2)2x) = €ait - €(aizayz - €4i+2)2k—1 *Usir1, 0<2<n—1,
d(e?ln+4i+2) = QUny4541, 6>0,0<i<n—1.

Moreover, if (4i + 2)2% < 8n < (4i + 2)2F+1,

d(eit2) * €(ait2)2 " " €(ai+2)28 Usit1) = V(gir2)2k+i_z, 0<i<n—1.
We also have the following differentials.

d

e

(
(e
(€in
(

2
4n) = Wen-—-1,
2
8

=8

n _e4n w8n—1a

2¢+1l  gatl a a+1
d *€gp Qlwsn—1)=Q2 Vien-2, a =0,

d e4n+4z) Q1w8n+81 1, a2 0, 1<i<n-1.
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There is no indecomposable element of degree 4i —1 for 1 <i <2n—1
in H,(Q250(8n + 2);F3). So e3; survives for each 1 < @ < 2n — 1,
which yields Folzy; : 1 < 4 < 2n — 1] in H.(Q2S0(8n + 2)/U(4n +
1);F2). By the degree reason, generators, wgn4si+1, 0 <1 <n—1,in
H,(Q250(8n + 2);F3) also survive. Moreover there are choices of the
generators with Q1(z4) = wsit1,n < 1 < 2n — 1, so that we have the
following identification:

Fo[Q%24i :a>0,n <i<2n—1] =Fylzg5 : n < i < 2n — 1]
R Fa[Qfwsir1 :a>0,n <i<2n—1].

By the degree reason, the following terms survive permanently:
Fo[Qfwsnisk+s :a > 0,0< k <n—1].

Hence we get

H,(250(8n +2)/U(4n + 1)); F)

=Falzgp : 1 <k <n—1]
® FaQfwsniskss 1 a > 0,0 <k <n—1]
® Fao[Q3245 : a > 0,4n < 4k + 2 < 8n].

The other three cases follow by the same method. O

For example, we have
H.(Q5S0(18)/U(9)); F2) = Faes] @ F2[Q 221, Q12290 1 @ > 0]
® FolQ12s, Q1212 1 a > 0].
COROLLARY 3.2. 2 annihilates all the 2-torsions in H.(Q2250(2n)/
U(n); Z).
Proof. Consider the Bockstein spectral sequence. Then
Ey = H,(Q250(2n)/U(n));F2).

By Nishida relation, we have Q%" wo, 1 sr43 = (Q3Wantsk+3)? for a >
0,0 <4k <n—>5and Q{24 = (Qf24)? fora > 0,n—3 < 4k < 2n—4.
Since this Bockstein spectral sequence is a spectral sequence of an Hopf
algebra, we have the following Es—term:

F2[24k 01 S 4k _<_ n— 3] ®E(w2n+gk+5 :0 S 4k S n— 5)
QFE (241 :n—3 <4k <2n—4).
Hence there is no higher differential and F; = E,. So the 2-torsions of
H,.(Q280(2n)/U(n); Z) are all of order 2. O
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COROLLARY 3.3. The rational homology of Q280(2n)/U(n) is as
follows.

H.(Q*50(2n)/U(n); Q)
= Q[Z4k 01 §4k§n—3]®E(w2n+8k+5:0§4k§n—5)
® E(zar :n —3 <4k < 2n —4).

4. Mod p homology of 250(2n)/U(n)

We compute odd prime cases. From now on we denote H.(Q2S™F )
by Q3(n) and ®]_, H.(Q25™;F,) by Qa(n1, - ,n,).
THEOREM 4.1. For odd primes p, we have
H. (Q2S0(4n)/U(2n); Fp) = Fplzg; : 0 < i< — 1]
® Qa(ngip3 :n—1<4<2n —2),
H.(2*SO(4n+2)/U(2n +1);F,) = Fylzg : 0< i < n — 1]
®Qa(ngipz:n<i<2n-—1).

Proof. We will prove this by induction. For n = 1, we have that
H*(9250(4)/U(2);Fp) = H*(QZSQ;]FP) =Fp[zo] ® H*(Q2S3;]Fp) .
By induction, we assume that

H,(Q*50(4n — 2)/U(2n — 1); Fy)

ZJFP[37410S1§TL—2]
@2 (ngig3:n—1<i <

2n - 3).

Consider the Serre spectral sequence associated to the following fibra-
tion:

Q?S0(4n - 2)/U(2n — 1) —— Q250(4n)/U(2n) —— Q2§42

Since this spectral sequence is a spectral sequence of Hopf algebras, the
source of the first non zero differential is a generator and the target is a
primitive element. For odd prime p, we have that

(QZSQn)(p) ~ (QS2n—1)(p) x (Q2S4n—1)(p) .
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Then we have that

H. (Q°S*" %, Fp) = Fplzan—a] ® B(Q%_128n—7:a > 0)

QF,[BQ5_128n—7:0a>0].

Hence there is no 4n — 5, 8n — 8 dimensional primitive element in the
part 3(ngir3 :n—1<i<2n—3) of H,(Q?SO(4n —2)/U(2n —1);F,)
and there is no 4n — 5 dimensional primitive element in Fyjz4; : 0 <
i < n —2]. Moreover if there exists nontrivial differential from 8n — 7
dimensional generator zg,_7 to 8n — 8 dimensional primitive element
in ]Fp[x4i : 0 < ¢ < n— 2], then it leads to contradiction to the fact
that H.(Q3SO/U;F,) = Fplzy; : ¢ > 1]. So the Serre spectral sequence
collapses at the Fy—term and we get

H.(Q22S0(4n)/U(2n);F,) = Fplzs; : 0 < i <n—1]
®Q2(n4i+3:n—1 S’LS2’R—2)

Next we consider the Serre spectral sequence associated to the fol-
lowing fibration:

0250(4n)/U(2n) —— Q2S0(4n+2)/U(2n +1) —— Q284"
Now we have that
H.(Q*SYF,) == Fylzan—2] ® E(Q%_ 2873 : a > 0)
®Fy[BQp_128n-3:a > 0].

Then there should be nontrivial differential from 4n — 2 dimensional
generator because H,(Q2S0/U;F,) does not contain a generator of di-
mension 4n — 2.

Since The elements (z4n_2)pk for £ > 0 in H.(QS*"~');F,) hits all
generators in H,(Q2941);F,), there is no 8n—4 dimensional primitive
element in H,(2280(4n)/U(2n);F,). Therefore the part H.(Q25%"1;
F,) of H.(Q22S80(4n)/U(2n);F,) survives permanently and we get

H.(Q*SOUn+2)/U(2n + 1);F,) = Fylzg; : 0 < < n —1]
® Qa(ngiys:n<i<2n—1).
d
By the same method as Corollary 3.2, we get the following result for
odd primes p.

COROLLARY 4.2. p annihilates all the p~torsions in H,(Q2S0O(2n)/
U(n); Z) for odd primes p.
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