DOI QR코드

DOI QR Code

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection Type

패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향에 관한 연구

  • 이철호 (서울대학교 건축학과) ;
  • 전상우 (포항산업과학원 강건재연구소) ;
  • 김진호 (포항산업과학원 강건재연구소)
  • Published : 2003.06.01

Abstract

This paper presents test results on eight reduced beam section(RBS) steel moment connections. The testing program addressed bolted versus welded web connection and panel zone(PZ) strength as key variables, Specimens with medium PZ strength were designed to promote energy dissipation from both PZ and RBS regions such that the requirement for expensive doublet plates could be reduced. Both strong and medium PZ specimens with a welded web connection were able to provide satisfactory connection rotation capacity for special moment-resisting frames. On the other hand, specimens with a bolted web connection performed poorly due to premature brittle fracture of the beam flange of the weld access hole. If fracture within the beam flange groove weld was avoided using quality welding, the fracture tended to move into the beam flange base metal of the weld access hole. Plausible explanation of a higher incidence of base metal fracture in bolted web specimens was presented. The measured strain data confirmed that the classical beam theory dose not provide reliable shear transfer prediction in the connection. The practice of providing web bolts uniformly along the beam depth was brought into question. Criteria for a balanced PZ strength improves the plastic rotation capacity while reduces the amount of beam distortion ore also proposed.

본 연구는 8개의 RBS(reduced beam section) 내진 철골모멘트접합부의 실물대 실험결과를 요약한 것이다. 실험의 주요변수는 보 웨브 접합법 및 패널존 강도를 택하였다. 균형 패널존 시험체는 접합부의 내진성능을 감소시키지 않으면서, 보와 패널존이 함께 균형적으로 지진에너지를 소산시키도록 설계하여 값비싼 패널존 보강판(doubler plates)의 수요를 줄이고자 시도한 것이다. 보 웨브를 용접한 시험제는 모두 특별 연성모멘트골조에서 요구되는 접합부 회전능력을 충분히 발휘하였다. 반면 보 웨브를 볼트 접합한 시험체는 조기에 스캘럽을 가로지르는 취성파단이 발생하는 열등한 성능을 보였다. 보 그루브 용접부 자체의 취성파괴가 본 연구에서와 같이 양질의 용접에 의해 방지되면, 스켈럽 부근의 취성파단이 다음에 해결해야 할 문제로 대두되는 경향을 보인다. 보 웨브를 볼팅한 경우에 접합부 취성파단의 빈도가 월등히 높은 이유를 실험 및 해석결과를 토대로 제시하였다. 측정된 변형도 데이터에 의할 때, 접합부의 전단력 전달메카니즘은 흔히 가정하는 고전 휨이론에 의한 예측과 전혀 다르다. 이는 전통적 보 웨브 설계법을 재검토할 필요가 있음을 시사하는 것이다. 아울러, 접합부에서 요구되는 바람직한 거동기준을 제시하고 이를 근거로 균형 패널존의 강도범위에 대한 예비적 추정치를 제시하였다.

Keywords

References

  1. Chen, S. J., Yeh, C. H., and Chu, J. M. (1996). “Ductile steel beam-to-column connections for seismic resistance,” J. Struct. Engrg., ASCE, Vol. 122, No. 11, pp. 1292-1299. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1292)
  2. Chi, B. and Uang, C. M., “Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Column,” J. Struct. Engrg., ASCE, Vol. 128, No. 4, 2002, pp. 464-473. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(464)
  3. Dexter, R. J. and Melendrez, M. I., “Through-thickness Properties of Column Flanges in Welded Moment Connections,” J. Struct. Engrg., ASCE, Vol. 126, No. 1, 2000, pp. 24-31. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:1(24)
  4. Engelhardt, M. D., Winneberger, T., Zekany, A. J., and Potyraj, T. J., “Experimental Investigations of Dogbone Moment Connections.” Engrg. J., Vol. 35, No. 4, AISC, Fourth Quarter, 1998, pp. 128-139.
  5. Gilton, C. S. and Uang, C. M., “Cyclic Response and Design Recommendations of Weak-Axis Reduced Beam Section Moment Connections,” J. Struct. Engrg., ASCE, Vol. 128, No. 4, 2002, pp. 452-463. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(452)
  6. Goel, S. C., Stojadinovic, B., and Lee, H. K.,. “Truss Analogy for Steel Moment connections”, Eng. J., Vol. 34, No. 2, 1997, pp. 43-53.
  7. Iwankiw, N., “Ultimate Strength Consideration for Seismic Design of the Reduced Beam Section(Internal Plastic Hinge),” Engrg. J., AISC, Vol. 34, No. 1, First Quarter, 1997, pp. 3-16.
  8. Jones, S. L., Fry, G. T., and Engelhardt, M. D., “Experimental Evaluation of Cyclically Loaded Reduced Beam Section Moment Connections.” J. Struct. Engrg., ASCE, Vol. 128, No. 4, 2002, pp. 441-451. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(441)
  9. Kim, T., Whittaker, A. S., Gilani, A. S. J., Bertero, V. V., and Takhirov, S. M., “Cover-Plate and Flange-Plate Steel Moment-Resisting Connections.” J. Struct. Engrg., ASCE, Vol. 128, No. 4, 2002, pp. 474-482. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(474)
  10. Krawinkler, H., “Shear in Beam-Column Joints in Seismic Design of Steel Frames.” Engrg. J., AISC, Vol. 15, No. 3, Third Quarter, 1978, pp. 82-91
  11. Plumier, A., “The Dogbone: Back to the Future,” Engrg. J., AISC, Vol. 34, No. 2, Second Quarter, 1997, pp. 61-67.
  12. Roeder, C. W., “General Issues Influencing Connection Performance.” J. Struct. Engrg., ASCE, Vol. 128, No. 4, 2002, pp. 420-428. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(420)
  13. SAC, “Seismic Design Criteria for New Moment-Resisting Steel Frame Construction,” Report No. FEMA 350, SAC Joint Venture, Sacramento, CA, 2000.
  14. SAP 2000, Analysis Reference Vol. I and II, Computer and Structures, INC., Berkeley, CA, 1998.
  15. Seismic Provisions for Structural Steel Buildings, 2nd Ed., AISC, Chicago, IL, 1997.
  16. Structural Welding Code-Steel, AWS D1.1: Section 3.10, American Welding Society, 2000.
  17. Tsai, K. C. and Popov, E. P., “Steel Beam-Column Joints in Seismic Moment Resisting Frames.” EERC Report, UCB/EERC-88/19, Univ. of Calif., Berkeley, 1988.
  18. Zekioglu, A., Mozaffarian, H., Chang, K. L., and Uang, C. M., “Designing after Northridge,” Modern Steel Constr., Vol. 37, No. 3, 1997, pp. 36-42.