Mixed $H_2/H_{\infty}$ Controller Realization with Entropy Integral

  • Lee, Sang-Hyuk (Department of Electrical Engineering, Pusan National University) ;
  • Kim, Ju-Sik (School of Electrical and Computer Engineering, Chungbuk National University)
  • Published : 2003.06.01

Abstract

An $H_2$/$H_{\infty}$ -controller realization is carried out by considering an entropy integral. Using J-spectral factorization, the parametrizations of all $H_{\infty}$ stabilizing controllers are derived. By the relation of a mixed $H_2$/$H_{\infty}$ control problem and a minimum entropy/$H_{\infty}$ control problem, the mixed $H_2$/$H_{\infty}$-controller state-space realization is presented.

Keywords

References

  1. Systems & Control Letters v.12 Relation between maximumentropy/ $H_{\infty}$ control and combined $H_{\infty}$ /LQG control D. Mustafa https://doi.org/10.1016/0167-6911(89)90050-9
  2. Proc. of the 27th CDC Controllers which satisfy a closed-loop $H_{\infty}$-norm bound and maximize an entropy integral D. Mustafa;K. Glover
  3. IEEE Trans. on Automatic Control v.34 no.3 LQG control with an $H_{\infty}$ performance bound: A Riccati equation approach D. S. Bernstein;W. M. Haddad https://doi.org/10.1109/9.16419
  4. IEEE Trans. on Automatic Control v.34 no.8 State-space solutions to standard H₂and $H_{\infty}$ control problem J. Doyle;K. Glover;P. P. Khargonekar;B. A. Francis https://doi.org/10.1109/9.29425
  5. Proc. of 1990 ACC Mixed H₂and $H_{\infty}$ control K. Zhou;J. Doyle;K. Glover;B. Bodeheimer
  6. IEEE Trans. on Automatic Control v.37 no.3 Necessary and sufficient conditions for mixed H₂and $H_{\infty}$ optimal control H. H. Yeh;S. S. Ganda;B. C. Chang https://doi.org/10.1109/9.119636
  7. Lecture Notes in Control and Information Sciences Minimum entropy $H_{\infty}$ control D. Mustafa;K. Glover
  8. Automatica v.35 Decentralized $H_{\infty}$-controller design J. H. Seo;C. H. Jo;S. H. Lee https://doi.org/10.1016/S0005-1098(98)00208-8
  9. Automatica v.27 Solutions to the $H_{\infty}$ general distance problem which minimize an entropy integral D. Mustafa;K. Glover;D. J. N Limebeer https://doi.org/10.1016/0005-1098(91)90021-S