A Study on Design of Robust $H_\infty$-QFT PSS Using Genetic Algorithm

유전 알고리즘을 이용한 강인한 $H_\infty$-QFT PSS 설계에 관한 연구

  • 정형환 (동아대 전기전자컴퓨터 공학부) ;
  • 이정필 (동아대 공대 정부기술연구소) ;
  • 박희철 (동아대 대학원 전기공학과) ;
  • 왕용필 (동아대 공대 정부기술연구소)
  • Published : 2003.07.01

Abstract

In this paper, a new design method of H$H_\infty$-Qn PSS using genetic algorithm(GA) is proposed to efficiently damp low frequency oscillations despite the uncertainties and various disturbances of power systems. The selection method of evaluation function is proposed for selecting the robust PSS parameters. All QFT boundaries are satisfied automatically and H$H_\infty$-norm is minimized simultaneously without trial and error procedure. The eigenvalues and the damping ratio of dominant oscillation mode are investigated to evaluate performance of designed controller for one machine infinite bus system. A disturbance attenuation performance is investigated through singular value bode diagram of the system. Dynamic characteristics are considered to verify robustness of the proposed PSS by means of nonlinear simulations under various disturbances for various operating conditions. The results show that the proposed PSS is more robust than conventional PSS.

Keywords

References

  1. E. N. Dialynas and N. C. Loskolos, 'Reliability modeling and evaluation of HVDC power transmission system,' IEEE Trans. on Power System, Vol. 9, No. 2, pp872-878, (1994) https://doi.org/10.1109/61.296269
  2. 손광명, 김동현, 이태기 장기수, 윤용범, 이진, '서대구 SVC 및 제어시스템 분석,' 대한전기학회 논문지, Vol. 50, No. 7, pp. 37-44, 2001
  3. 손광명, '전력 계통 동요 억제를 위한 TCSC의 제어,' 서울대학교 박사학위 논문 (1996)
  4. O. H. Abdalla, S. A. Hassan and N. T. Tweig, 'Coordinated stabilization of multimachine power systems,' IEEE Trans. on PAS, Vol. 103, No. 3, pp. 483-491 (1984) https://doi.org/10.1109/TPAS.1984.318726
  5. J. H. Chow and J. J. Sanchez-Gasca, 'Pole-placement designs of power system stabilizers,' IEEE Trans. on power systems, Vol. 4, No. 1, pp. 271-277 (1989) https://doi.org/10.1109/59.32488
  6. Y. N. Yu, K. Vongsuriya and L. N. Wedman, 'Application of an optimal control theory to a power system,' IEEE Trans. on PAS, Vol. PAS-89, No. 1, pp. 55-62 (1970) https://doi.org/10.1109/TPAS.1970.292668
  7. W. Gu. and K. E. Bollinger, 'A self-tuning power system stabilizer for wide-range synchronous generator operation,' IEEE Trans. on PWRS, Vol. 4, No. 3, pp. 1191-1199 (1989) https://doi.org/10.1109/59.32617
  8. A. Grandakly and P. Idowu, 'Design of a model reference adaptive stabilizer for the exciter and governor loops of power generators,' IEEE Trans. on Power Systems, Vol. 5, No. 3, pp. 887-893 (1990) https://doi.org/10.1109/59.65918
  9. M. Hassan, O. P. Malik and G. S. Hope, 'A fuzzy logic based stabilizer for a synchronous machine,' IEEE Trans. EC, Vol. 6, No.3, pp. 407-413 (1991) https://doi.org/10.1109/60.84314
  10. S. Chen and O. P. Malik, 'H_{\infty} optimization-based power system stabiliser design,' IEE Proc.-Gener. Transm. Distrib., Vol. 142, No. 2, pp. 179-184 (1995) https://doi.org/10.1049/ip-gtd:19951711
  11. P. S. Rao and I. Sen, 'Robust tuning of power system stabilizers using QFT,' IEEE Trans on control systems technology, Vol. 7, No. 4, pp. 478-486 (1999) https://doi.org/10.1109/87.772163
  12. 정영환, 이정필, 허동렬, 김창현, '전력계통의 안정도 향상을 위한 강인한 GA-QFT제어기 설계', 대한전기학회 논문지, Vol. 50A, No. 4, pp. 197-207 (2001)
  13. Y. Y. Tsu and C. R. Chen, 'Tuning of power system stabilizers using an artificial neural network,' IEEE trans. on EC, Vol. 6, No. 4, pp. 612-619 (1991) https://doi.org/10.1109/60.103633
  14. M. R. Khaldi, A. K. Sarkar, K. Y. Lee and Y. M. Park, 'The modal performance measure for parameter optimization of power system stabilizers,' IEEE Trans. on EC, Vol. 8, No. 4, pp. 660-666 (1993) https://doi.org/10.1109/60.260978
  15. Z. Michalewicz, 'Genetic algorithm + data structures = evoution program', second edition, Springer-Verlag, 1992
  16. J. C. Doyle, K. Glover and P. P. Khargonekar, 'state-space solutions to standard $H_2$ and $H_{\infty}$ control problems,' IEEE Trans. on AC, Vol. 34, No. 8, pp. 831-847 (1989) https://doi.org/10.1109/9.29425
  17. C. H. Houpis, S. J. Rasmussen, 'Quantitative feedback theory', Marcel dekker, Inc. 1999
  18. Y. N. Yu, 'Electric power system dynamics,' ACADEMIC PRESS (1983)
  19. J.M. Rodrigues, Y. Chait, C. V. Hollot, 'An Efficient Algorithm for Computing QFT Bounds', Journal of Dynamic Systems, Measurement, and Control, Vol. 119, 1997
  20. I. M. Horowitz, 'Optimum loop transfer function in single-loop minimum-phase feedback systems,' Int. J. Control, Vol. 18, No. 1, pp. 97-113 (1973) https://doi.org/10.1080/00207177308932490