Ol&

oy

FE 2H0M V-3 E EdMMg X6 /1B HISTIE WA F53 71 325

ol F HFE BHA &7-A & EdHAE A7 A

Al 5714 M4 FESE 719
TR AT

2 o

ol% EetolAE/AY dle|gulel2 Axulelx Fto|JE A el R} glo] HE7H AH FES} 7IPL S, ¢7]-d8 E
ARG AYfA AdPohd E71Y FA% AXEE $EE 2T ofF ERHLY A/ diE 2L AFA &= AV 249
ool EAE AZAY] A3, # =RAME F /M SR dAA AR Addd ERAAY Ny AdE £o)7] A% HEriH #Ag
A g 9858 2HE EWAAY 7] NS B £ A% AW WARlT. vEY] FE8 REE A Uey] A dEHs
g A, Al HAAE 7P A2 BREAXE @ RS AR dEUIEE sl olF FEeldEE o dAAAES dHUEE A
43te] AN Al AT FEALE FHAFR olF EWAHY Ur)|A 7] diE BFsEr)

Asynchronous Cache Invalidation Strategy to Support Read-Only
Transaction in Mobile Environments

I-Do Kim'- Sung-Hun Nam*

ABSTRACT

In stateless server, if an asynchronous cache invalidation scheme attempts to support local processing of read-only transaction in mobile client
/sever database systems, a critical problem may occur ; the asynchronous invalidation reports provide no guarantees of waiting time for mobile
transactions requesting commit. To solve this problem, the server in our algorithm broadcasts two kind of messages, asynchronous invalidation
report to reduce transaction latency and periodic guide message to avoid the uncertainty of waiting time for the next invalidation report. The
asynchronous invalidation report has its own sequence number and the periodic guide message has the sequence number of the most recently
broadcast asynchronous invalidation report. A mobile client checks its cache validity by using the sequence numbers of these messages.

FI1¥E : 0|5 EMM(Mobile Transaction), HISII1H &3 HA|XI(Asynchronous Invalidation Report), 2Hil HIAIXI(Guide Message),

74 @M (Cache Consistency)

1. Introduction

Since the bandwidth of the wireless channels is very li-
mited in a mobile computing environment, it is important
to minimize mobile client’s access to wireless channel, in or-
der to reduce the contention on the narrow bandwidth. Local
processing of read-only transactions and caching of frequ—
ently accessed data at mobile clients have been shown to
be an useful techniques to minimize access to narrow cha-
nnel. Local processing of read-only transactions means that
mobile clients can commit or abort the read-only transac-
tions without contacting server.

However, for caching to be effective, the cached data must

t FA3]d TSt AR ety me
1t 4 3 A ae A8 A elasaud
=R 120029 99 179, AARER 1200349 349 139

be consistent with those data stored in the server. To our
knowledge, most of cache invalidation schemes for mobile
environments in the literature are stateless-based and adopt
synchronous (periodic) manner by way of invalidation report
broadcast. The primary concern of periodic invalidation re—
port is to prevent loss of invalidation reports due to discon-
nection and mobility of mobile clients [2, 6,7, 8].

An asynchronous Scheme (AS) [1] is presented as an al-
ternative to the periodic invalidation reports approach. How-
ever, this scheme is stateful-based approach and broadcasts
invalidation report whenever a data item is updated at the
server. Although, it shows severa enhancements compared
with periodic invalidation report approach, there are needed
additional mechanisms to ensure cache consistency in error-
prone mobile environment (especially, unrecognized loss of

message of mobile clients caused by communication noises),

326 FEMeIEE=EX C AHI10-CH MI3=(20036)

because it doesn’t ask acknowledgement on broadcasting
process. And, actually, the conventional recovery method by
means of retransmissions and acknowledgements is not
suitable for broadcast data in mobile environments [9].

To support local processing of read-only transaction, we
have to ensure the consistency of client’s read-only transac-
tion when a data item is updated at the server. In [3], they
presented an approach based on broadcast disk to support
read-only transaction in mobile clients. In our previous work
[4], we proposed an approach to support transaction seman-
tics based on periodic invalidation report. However, all com-
mit requests for locally completed transactions at mobile
clients are passed to server.

In this paper, we assume stateless server to manage mo-
bile clients caches, in the same way with [2] and consider
additional disconnection state, such as loss of data caused
by communication noises. Under these assumption and con-
sideration, we suggest a local processing algorithm of read-
only transaction based on asynchronous cache invalidation
scheme. However, an asynchronous cache invalidation sch-
eme to support local processing of read-only transaction
may lead to a critical problem. That is, asynchronous invali-
dation no guarantees of waiting time for the next asynchro-
nous invalidation report [2]. Thus, no guarantees can be gi-
ven for the waiting time of transaction requesting commit,
To solve this problem, the proposed algorithm adopts a new
conceptual control message (guide message) to avoid the
uncertainty of waiting time.

The main advantages of our strategy are that our algo-
rithm achieves great improvements of transaction latency
and it minimizes the number of aborted transactions com-
pared with the algorithm that uses periodic invalidation re-
port. The key design issues include, server broadcasting
manner, mobile client’s access to cached data and transac-
tional consistency check on accessed data. With respect to
the broadcasting manner, the server immediately broadcasts
an invalidation report right after commit an update tran-
saction at the server to reduce the transaction latency and
to decrease the number of aborted transactions, and the asy-
nchronous invalidation report has its own sequence number
to prevent loss of message caused by communication noises.
In addition to the asynchronous broadcasting, the server
periodically broadcasts guide message that brings just the
sequence number of the most recently broadcast invalidation
report. This guide message will have very small fixed size.
The sequence number of both messages is used to check
cache validity of mobile clients. Through the cache validity

check, each mobile client can ensure whether they are lost
some broadcasting messages.

The remainder of the paper is organized as follows. Sec-
tion 2 shows the design principles for supporting transac-
tional cache consistency while retaining the broadcast- ba-
sed cache invalidation scheme. Section 3 supports the seri-
alizable execution of read-only transaction on mobile client.
Section 4 presents experiments and results, and finally we

state our concluding remarks in section 5.

2. Basic Design Principles

In this section, we show the basic design principles of our
approach to maintain cache consistency and to support re-
ad-only transaction based on asynchronous cache invali-
dation scheme and periodic guide message in mobile cli-
ent/server database systems.

2.1 Server Broadcasting Manner

This is one of key aspects of our design issues in mobile
client/server database systems. The server immediately br-
oadcasts an invalidation report right after commit of an
update transaction. And it is tagged with a sequence number.
Each mobile client can check its own cache validity by using
these sequence numbers. Whenever a mobile client receives
an invalidation report, it checks if the sequence number of
the invalidation report is sequential or not with that of the
lastly received invalidation report. If so, it can be assumed
that the cache of a mobile client is valid, then it executes
invalidation process on its cache using the data identifiers
in the invalidation report. If not, the mobile client has to
refresh the cache. If a mobile client is on reconnection state,
it waits for the next invalidation report and compares the
sequence number of the lastly received invalidation report
before disconnection and that of the first received inva-
lidation report on reconnection state. If they are sequential,
it can be assumed that the cache is valid, then executes the
invalidation process on the cache.

However, the asynchronous cache invalidation scheme has
its own shortcoming when it used to support local processing
of read-only transaction by using the invalidation report.
There are no guarantees when the invalidation report will
be sent and hence no guarantees can be given for the waiting
time. If the invalidation report is used to process locally
read-only transaction, mobile clients sometimes have to wait

the invalidation report that can not be expected when to

Ol% Eal

arrive. Hence, the server broadcast guide message to avoid
uncertainty of waiting time. It is periodically broadcast by
the server and has the sequence number of the most recently
broadcast invalidation report. Whenever a mobile client re—-
ceives guide message, it checks the sequence number of
the message. If the number is identical with the lastly re-
ceived invalidation report, the mobile client’s cache can be
considered valid.

Then, we will explain how we use the asynchronous inva-
lidation report and periodic guide message for transactional
consistency check on mobile client in the following sub-
section.

2.2 A Mobile Client's Access to Cached Data and Consi-
stency Check on Accessed Data

These are key aspects of our design issues in a mobile
client/sever database system. In the periodic broadcasting
approaches [2] to cache invalidation scheme, any read ope-
ration of cached data item in a broadcasting interval is de-
ferred ; it is answered in the next broadcast interval even
though the data item is in the mobile client cache. From the
serializability point of view, this solution implies that each
transaction issuing any read operation of cached data item
in an interval [tsi-, tsi] should be serialized after all the com-
mitted transactions up to the timestamp ts;. Although this
solution provides a mobile client with the highest currency
or freshness of data item with a bounded latency, ie., a
mobile client always reads the most recently committed data
items, it notably loses the availability benefit of client ca-
ching and greatly raises transaction latency if the interval
is long, especially if the data item at the local cache is valid.
In our algorithm, in contrast to the previous deferred-access
scheme, any access to cached data item is answered using
the cached data immediately ; a mobile client does not wait
until the next IK is arrived. The immediate-access scheme
has the advantage of high availability of client caching. In
the immediate~access scheme, although stale data (i.e., it is
older than the data item’s latest committed value) may be
accessed by a mobile client, it will be detected by the mobile
client through the consistency check on accessed data.

With respect to consistency check on accessed data, in
our algorithm, a mobile client performs it on the basis of
invalidation reports broadcast by the server. This scheme

is based on the following property on invalidation reports.

Property on Invalidation Reports. A mobile client cache
is transactionally consistent immediately after the mobile

JI-HE Echig XIRBT| ST HISZ A el F&E8 718 327

client processes an invalidation report. The above property
is based on the assumption that the server is always keeping
a consistent database state by allowing only serializable ex—
ecution and keeping invalidation reports transactionally con-
sistent. From the property on invalidation reports, we can
derive the following [Lemma 1] upon which a mobile client’s
consistency check on accessed data of read-only transaction
is based.

[Lemma 1] Suppose that a read-only transaction T; is ex—
ecuting on a mobile client. If no data item
accessed by the transaction is invalidated after
processing an invalidation report (IR) broad-
cast by the server at the time ts;, IR(ts), the
execution involving T is serializable up to ts;.

[Proof] Let us assume that the execution involving Ty is

not serializable up to tsi. This implies that 77 has
been involved in a cycle at serialization graph {10]
at some point between its beginning and ts;. Obvi-
ously, if no data item accessed by T} is invalidated
after processing IR(tsi), there does not exist any
edge from T} to another committed transaction T
due to 7 n(x) —w_ r(x) conflict at serialization
graph. So, the serialization graph involving 77 is
acyclic and this is a contradiction to the fact there
is a cycle at serialization graph.

A mobile client checks consistency on accessed data as
an integral part of a cache invalidation process ; while a
mobile client is being connected, it listens to every invali-
dation report broadcast by the server. At any time, if any
data item read by the active transaction is invalidated and
dropped from its cache, then the mobile client aborts the
active transaction. Otherwise, it goes on the transaction and
commits it if its commit request has been issued. However,
in case of the guide message, there is no invalidation
process and transactional consistency check. Thus, if the
mobile client ensures its cache consistency, just keeps the
transaction processing and commits it if its commit request
has been issued.

(Figure 1) explains the roles of invalidation report (IR),
guide message (GM). And it shows how proposed algo-
rithm improves the transaction latency and reduces the num-
ber of aborted transactions. GM has same meaning with em-
pty IR. However, it has the sequence number of the most
recently broadcast IR to help mobile client’s cache validity
check. In the periodic approach, although ap and ¢ is valid

328 EXMZIEzl=2X C HM10-CH M3=(20036)

data, T; is delayed to first IR and then committed. However,
the proposed algorithm can commit 7y earlier by asynch-
ronous IR;. T» is delayed until the second IR is arrived and
aborted with periodic approach, and then the re-execution
is committed at IR3. However, the proposed algorithm can
commit 77 very early by asynchronous IRz without aborting.
The second GM has the sequence number @ that is the one
of the third asynchronous invalidation report. The third GM
has the same sequence number with the second GM because
there is no IR between the second and third GM. When a
mobile client is on reconnection (after disconnection) and
receives third GM, its cache is valid if the sequence number
of lastly received IR before the disconnection is @ ; othe-
rwise the cache may inconsistent with server database, then

the mobile client has to refresh its cache.

wibi] wlel Wib]
(Server Updates)
IRbY) 1R {crbe) R
n%ao; r2las) - rzla)
Mo relond J ralbal 1
G Az (Periodic) C2
. 1A (6:) ralo] Re(en}d 1Ra(b2)
1lao 2lao GM(3
el | O b o g’
C C2 (Proposed)

(Figure 1) Transaction processing using /R and GM
3. Proposed Algorithm

We assume that update transactions are made and pro-
cessed only at server and mobile clients only execute read-
only transactions.

3.1 The Server's Algorithm

In basic design principles, the sever broadcast the IR that
only contains updated data items of currently committed
transaction. In frequent disconnection environments of wire-
less network, this way may hardly degrade the cache ef-
ficiency because mobile clients through out the entire cache
whenever it lose some broadcasting IR, Thus, the IR is
piggybacked with some extra information. The IR consists
of data identifiers and their sequence numbers of data items
have been updated during the last w seconds. The all updated
data items in a committed transaction have same sequence
number, and the sequence number of currently committed
update transaction is the sequence number of IR.

To construct IR and GM, and to ensure the cache con-
sistency of each mobile client, the server keeps the following

information.

[n] = { n is the sequence number of invalidation report that
the most recently broadcast to mobile clients}
[U(T)] = { [, vl Jjis a data item that will be updating by

committing transaction 7; at server, and vj is a
new version that will be attached to j}
[List(IR)] = { [n, j, tir] n is sequence number of the IR, j
is a data item that broadcast by IR, and tgn
is a time stamp of the IR.}

With the above information, the server makes a /R when-
ever commit an update transaction. The IR consists of a
representative sequence number n+l and the identifiers js
of the data items updated by transaction T;, and the extra
information piggybacked to original IE,+1. The extra infor-
mation gets from List (IR»), and consists of the identifiers
of data items and their sequence numbers having larger tig.
than ¢t - w (ct is current time). The resulting algorithm is

as follows :

O When commit a T; {

if (it is update transaction) broadcast IRn+1 ; }
@ If it is time to broadcast GM {broadcast GMIn] ; }
@ If it is asked for rrq by a mobile client {

send the message containing (j’s value, vj) ; }

In server algorithm, we assume the transmitted data item
always consistent with database and the server's transmi-
tting order of messages and mobile client’s receiving order

is same.

32 A Mobile Client's Algorithm

The IR’s piggybacking mechanism gracefully keeps the
cache efficiency under frequent disconnection mobile envir-
onments, But, still we have to consider another problem. A
mobile client lost a invalidation report, then it received a
periodic GM and invalidated the entire cache. Right after
the entire cache invalidation, if the mobile client receives IR
and it has enough information to maintain consistency, it
also degrades the cache efficiency. Thus, the mobile client
intelligently executes the cache invalidation process. Altho-
ugh the sequence number of periodic GM is not identical
with that of the lastly received IR, the mobile client skips
the cache invalidation process if the timt_e interval (nt) bet-
ween the arrival times of lastly received invalidation report
and currently received periodic GM is smaller than a half
of w, and if the mean arrival time (mt) of IR is not over

Ols ZFE SHOM ¢7)-88 ESMME XYst7| 218 HIS7I1H 79 253 718 329

a half of w. It means the largest sum of the unrecognized
or recognized disconnection period and the waiting time for
the next IR is not over a w. If the waiting time is over a
half of w, the mobile client invalidates the entire cache. Of
course, it is the worst case.

In this subsection, a mobile client’s algorithm for achieving
serializability of transactions is shown. Each mobile client

keeps m and ReadSet defined as follows :

[m] = { mis a sequence number of the most recently
received/R }
[ReadSet] = { [j]j is a data item that has been read by a

active transaction }

A mobile client answers a read operation rr) either by
answering the cached data immediately if a requested data
item is in its cache or by going uplink to the server with
the operation if a requested data item is not in its cache.
On receiving a commit request commitr for a transaction
T, a mobile client wait next broadcasting message (IR or
GM). On reconnection state(after disconnection), a mobhile
client wait next broadcasting message (IR or GM). On re-
ceiving IR», a mobile client checks the sequence number n
of IR is sequential or not with the m of the lastly received
IR before disconnection. If so, the mobile client executes
invalidation process on its cache. If not, it compares the m+1
and the smallest n—i of IR, if m+1 is equal or larger than
n-i, it executes invalidation process on its cache by using
the data items in IR that have larger sequence numbers than
m. If m+1 smaller than n-i, it invalidates the entire cache.
After invalidation process, if there is active transaction, the
mobile client checks the transactional consistency on ac—
cessed data item. If any data item read by the active tran—
saction is invalidated and dropped from its cache, then the
mobile client aborts the active transaction. Otherwise, it goes
on the transaction and commits it if its commit request has
been issued. On receiving periodic GM, there is no invali-
dation process and transactional consistency check. Thus,
if the sequence number of GM is same with that of the la-
stly received IR, the mobile client just keeps the transaction
processing and commits it if its commit request has been
issued. Otherwise, it checks if the nt and the mt is smaller
than a half of w. If so, it waits the next IR ; otherwise, it
invalidates the entire cache and abort active transaction. The
algorithmic description of mobile client’s activity is as fol-

lows :

1. On receiving r7(j) {
if (j is in the cache) {
answer by using the value in its cache ; }
else {
load j into its cache from server
and answer by using the value ; }}
2. On receiving commitr for T {
wait next broadcasting message (IR or GM) ; }
3. On reconnection state (after disconnection) {
wait next broadcasting message (IR or GM) ; }
4. On receiving the invalidation report IR, {
if (n > m+1 and m+1 < the smallest n~i of IR)
{ invalidate the entire cache ; }
else {
for (every item j in its cache) {
if (there is a data item j in IR) {invalidate j ; }}
if (any data item was invalidated at its cache){
if (there is an active T such that its ReadSet
contains any dropped data item) {abort T}
else if (7"’s commit request has been issued)
{commit T'; }
h
5. On receiving guide message GM (n) {
if (n>m{
if (nt and mt < a half of w) {wait next IR ;}
else {
{ invalidate the entire cache ; }
if (there is active T Mabort T'; }
hi
else if (there is active T and it's commit request has been
issued)
{ commit T'; }

With respect to disconnection, a mobile client aborts its
transaction at following two cases ; First, when the m +1 <
the smallest n-i of the currently received IE. Second, when
the m < n of the currently received GM and it can not get
IR in a half of w after receiving the GM. Namely, although
a transaction is processed during disconnection, the mobile
client can commit the transaction on reconnection state re-
gardless of the term of disconnection if the mobile client has
received all IR broadcast by server.

The following [Theorem 1] indicates that proposed al-
gorithm based on asynchronous IR and periodic GM gene-
rates serializable execution of read-only transactions at
mobile clients.

[Theorem 1] Proposed algorithm generates serializable ex-

ecution of read-only transactions.

[Proof] Since each read-only transaction that is intended
to commit should access the most recently com-
mitted values of data items in proposed algorithm,
each mobile transaction that will be committed can-
not have any outgoing edges at serialization graph
at commit point. This fact is obvious from [Lemma
1]. It means that serialization graph containing com-

mitted read-only transaction of mobile clients and

330 FEXeiE =X C HM10-CH H(3==(2003.6)

update transaction of server is acyclic, so the ex~
ecution is serializable.

3.3 Additional Aigorithm to Maintain Cache Efficiency

Here we basically throw out the entire cache when the
mobile client can not ensure its cache validity from cache
validity check. Our method is similar with that of [2]. How-
ever, throwing out the entire cache after a long desconnec-
tion period essentially takes away the benefits of caching,
especially if the update rate is low and most of the cached
objects are still valid. To improve cache efficiency, some
papers prefer that mobile client sends a query message to
server to get a list of data items that updated during its
disconnection period [1,5, 71.

Thus, in proposed algorithm, instead of throwing out the
entire cache, mobile clients simply send a cache refresh re-
quest (CR) to refresh its cache if the number of lost IR is
not over a certain number ; the number of lost IR gets from
comparison of the sequence numbers of the lastly received
IR before disconnection and currently received broadcasting
message (IR or GM). And the CR brings the sequence num-
ber of lastly received IR. To service CR of mobile clients,
server maintains the log of the sequence numbers of IRs
and identifiers of updated data items for certain period. When
sever receives the CR from mobile clients, it answers with
a list of data identifiers that having larger sequence number
than that in the mobile client's CR. When a mobile client
receives the answer from server, it executes invalidation
process on its cache by using this list. Then, it checks con-
sistency on accessed data of active transaction.

4, Performance

In this section, we describe the simulation model and pre-
sent the results of experiments. In order to evaluate the per-
formance of the proposed algorithm, we compare the pro-
posed algorithm to the algorithms in the literature. However,
in case of the AS [1], although it adopts asynchronous cache
invalidation scheme, it can not be compared with the pro-
posed algorithm since it adopts stateful server and does not
work under unrecognized disconnection. Thus, we compare
the proposed algorithm to the algorithm based on synchron-
ous cache invalidation scheme in terms of the number of
uplink messages and aborted transactions, and mean res-
ponse time. The synchronous cache invalidation scheme is
similar with TS of [2] that the server broadcast periodically
the invalidation report. This algorithm also adopts immediate

access scheme and checks the transactional consistency on
accessed data as an integral part of a cache invalidation pro-
cess in the same way with our proposed algorithm. In this
simulation, we call this algorithm as periodic algorithm to
make easy the comparison with the proposed algorithm. The
basic scenario corresponds to the parameters setting in

<Table 1>.

{Table 1> Simulation Parameter Settings

Parameter Value
DababaseSize 1000 data items
DataltemSize 1200 bytes
DownlinkBW 1000 kbps
UplinkBW 10 kbps
TrSize 10 operations
ClientNum 1~100 clients
CacheSize 300 data items
TrNum 100 transactions of each client
Period 10 seconds
broadeastingWindowSize | 1, 3 period
MeanUpdatelnterval 1~20 seconds
ReadRequest 64 bytes
GuideMessage 64 bytes
CacheRefreshRequest 64 bytes
HotRegion 300 data items of database
ColdRegion The rest of database except HotRegion
HotAccess 80%

ColdAccess 20%
HotUpdateAccess 70%
ColdUpdateAccess 30%
DisconnectionRate 0~90%

The server database consists of 1000 data items, and each
data item is 1200bytes in size. The bandwidth of downlink
is 1000kbps, and uplink is 10kbps. A transaction is consists
of 10 operations. The number of clients is changed 1 to 100.
And each client has cache of 300 data items and executes
100 transactions. The period of the periodic IR and the GM
of the proposed approach is 10seconds. The broadcasting
window size of invalidation report is set to 1 or 3 period.
We examine the number of aborts and uplink messages, and
the mean response time, where change the mean update
interval 1 to 20 seconds at server. The read request message,
the GM and the CR are 64 bytes in size. The size of as-
ynchronous IR is (NIR * bS) + (log(N) * k) bits where the
NIR is the number of sequence numbers in the report, the
bS is the bits of each sequence number, the log(N) is the
bits of each name of data item (assuming that N is the
maximum number of data items in database and that each
name is coded by log(N) binary bits), and k is the number

018 HEEY BB ¢

of data items in the report. Mobile clients have common 300
data items (cache) hot region of the database to which 80%
of its accesses are directed, while the remaining accesses
are directed to the rest of the database. Server has same
hot region of database with mobile clients to which 70% of
its update accesses are directed, while the remaining update
accesses are directed to the rest of the database. Discon-
nection period of each mobile client is decided by Dis-
connectionRate. The basic disconnection period is 10 secon-
ds. Right after a mobile client commit a transaction, it is
decided by using DisconnectionRate that the mobile client
to sleep or not during 10seconds from current time. If it is
decided to sleep, the decision process is repeated on next
period and it is repeated till the mobile client is decided to
be awaken during some period. The total time to be de-
cidedto sleep is disconnection period of the mobile client. For
example, right after a mobile client commit a transaction,
if the 1st, 2nd and 3rd period are decided to sleep and 4th
period is decided to be awaken, the total disconnection time
is 30seconds. Thus, if the higher DisconnectionRate is given,
the more frequent and longer disconnection period is made.

16 —>— Periodic
14 —6— Proposed

| X H I I I M H R R X

BWI| asuoday uesy
>

8

6

4L

21

0

t 4 7 10 13 16 19
Mean update interval
(a) Mean response time

15000

14000 —>— Periodic
Z 13000 - —e— Proposed
% 12000 +
o 11000 |
S
i 10000 |
é 9000 |
s 8000 L
[l

7000 |

6000 »&!‘

5000 . . . e

1 4 7 0 13 16 19
Mean update interval

(b) Number of uplink messages
(Figure 2) Respones time/Uplink messages (ClientNum :

20, DisconnectionRate : 0%, BroadcastingWin-
dowSize : 1)

-Hg EHMME XS] 28 HISZIA HH F=3 718 331

(Figure 2). shows the influence of early commits on re-
sponse time and the number of messages transmitted on
uplink from mobile clients to server, where Broadcasting—
WindowSize is set to 1 period and DisconnectionRate is set
to 0. In spite of the little difference of the number of uplink
messages between the both algorithms, the periodic algo-
rithm keeps higher response time all over MeanUpdateln-
terval and there is almost no change on response time. This
is because, the main factor to decide response time is the
$Period$. Any transaction requesting commit always has to
wait next periodic invalidation report. On the contrary, the
proposed algorithm shows much better response time when
the MeanUpdatelnterval is small, and the difference of
response time between the two algorithms gradually gets
closer as the MeanUpdatelnterval increases. This is be-
cause, the proposed algorithm gets much more early commit
chances when the MeanUpdatelnterval is small, however,
these chances gradually decrease as the MeanUpdatelnter-
val gets larger. If there are no updates, the response time
of the both algorithms will be equal. This is because, a
commit request transaction of the proposed algorithm is only
committed by GM that has the same $Period$ with the
periodic IK.

18
16 TSI NI P, FIc MN—X
14 r
L o]
§ 12
o 10
@
g 3
&
§ 6
4L X Periodic
2 —o— Proposed
0
1 4 7 10 13 16 19
Mean update interval
(a) Mean response time
15000
14000> I
z 13000
5
g 120 X Periodic
% 11000 —o— Proposed
S 10000
=
3 9000
2 8000
2
o w
6000 o

1 4 7 10 13 16 19

Mean update interval
(b) Number of uplink messages

(Figure 3) Response time/Uplink messages (ClientNum : 20,
Disconnection : 30%, BroadcastingWindowSize : 1)

332 FEMEIE =X C HM10-CT M3=(20036)

(Figure 3) shows the influence of DisconnectionRate on
the response time and on the number of uplink messages.
Here we raise the DisconnectionRate to 30%, but other pa-
rameters have same values with those of (Figure 2). In pe-
riodic algorithm, the number of uplink messages dramati-
cally increases compared with that of (Figure 2). And, as
the result of it, the mean response time also increase. It
shows the periodic algorithm is highly sensitive to Discon-
nectionRate. This is because, the mobile clients throw out
entire cache when the disconnection period is over the Bro-
adcastingWindowSize. It causes a lot of read requests from
mobile clients that executing transaction. However, the pro-
posed algorithm shows lower sensitivity to Disconnection—
Rate compared with the periodic algorithm.

18
16 [
DV i Lt R VY SV VIRV IRV SV VIV,
4 r
z 127
£
2 10
2 s
8
i
?D. 6
4 f —>— Periodic
2 —o&— Proposed
0 A
1 4 7 10 13 16 19
Mean update interval
(a) Mean response time
15000
14000
13000

12000 —%— Periodic
11000 —e— Proposed

aBessalu yuydn Jo Jagquny

1 4 7 10 13 16 19

Mean update interval
(b) Number of uplink messages
(Figure 4) Response time/Uplink messages (Clienthium :
20, Disconnection : 30%, BroadcastingWindow-
Size : 3)

(Figure 4) shows the influence of Broadcasting Window-
Size on the response time and on the number of uplink me-
ssages under high DisconnectionRate. Here we raise the
BroadaastingWindowSize to 3 periods, but other parameters
have same values with those of (Figure 3). In periodic al-
gorithm, the larger BroadcastingWindowSize fairly reduces
the read requests of mobile clients compared with that of

(Figure 3) and it also reduces the response time. However,
it steel keeps higher response time and larger number of
uplink messages than proposed algorithm. And proposed al—
gorithm shows comparatively lower sensitivity to Broadoa-
stingWindowSize than the periodic algorithm. It means that
the number of CacheRefreshRequest on reconnection state
of mobile clients has little effect on the number of uplink
messages. Actually, in the simulation results, the highest
number of CacheRefreshRequest was 606 under the envi-
ronment of (Figure 3) and Here was 312. these are very small
portion of the total number of uplink messages.

600
500 F X Periodic
—&—— Proposed
z 40T
c
3
g 30|
=}
o
g 20
=
w
100
0 2
1 4 7 10 13 16 19
Mean update interval
(a) Broadcsating windowsize : 1
600
s X Periodic
—o— Proposed
=z
=
3
o
@©
[=X
o
o
o
@

Mean update interval

(b) Broadcsating windowsize : 3

(Figure 5) The number of aborts (ClientNum : 20,
Disconnection : 30%)

(Figure 5) shows each number of aborted transactions in
both environments of (Figure 3), (Figure 4). the number of
aborts of both algorithms decrease as the MeanUpdateln-
terval increases and our algorithm keeps the lower number
of aborts all over MeanUpdatelnterval. Especially, the dif-
ference between both algorithms gets bigger as the Mean
Update Interval gets smaller. The most difference occurs
when the MeanUpdatelnterval is 1 second. As already ex-
plained in (Figure 1), the deferred broadcasting of periodic
algorithm is main reason for the high abort rate : The more
updates are occurred within a period, the more transactions

are aborted with the periodic algorithm. On the contrary, the
higher update frequency in the proposed algorithm makes
more early commit chances than the periodic algorithm. Thus,
the difference is much larger when the Mean Up date-
Interval is smaller than the Period.

120

—>¢— Periodic
—o— Proposed

100 |

awi| asuoday uesy
2 8

N
(=
T

20 |-
0 L .
10 20 30 40 50 60 70 80 90
Rate of disconection(%]
(a) DisconnectionRate : 10~90%
35
L (]
30
§ 257
:%13 20 f
S
B 151
=
g 1
oy X Periodic
5t —&— Proposed
0

10 20 30 40 50 60 70 80 90 100
Number of Clients
(b) ClietNum : 10~100

(Figure 6) Response time ((a) clientNum : 20, (b) Discon-
nectionRate : 30%, (a)(b) BroadcastingWindow-
Size: 3)

(Figure 6) shows each response time in both case that the
DisconnectionRate is changing from 10 to 90 and the Cli-
entNum is changing from 10 to 100. In any case, the pro-
posed algorithm shows better response time. However, when
the number of clients is over certain level, the response time
of the both algorithms gets closer. This is because, the con-
current transaction execution of multiple clients causes a lot
of cache requests and it makes worse the wireless network
bottleneck. And the network bottleneck mostly occurs on
uplink that has relatively narrower bandwidth than down-
link. The network bottleneck of uplink delays the arrival time
of cache requests at server, and the delay increases the tran-
saction processing time. If the network bottleneck is over
a certain degree, the main factor to decide the response time
of transaction is the message delay of uplink. Thus, the re-
sponse time of both algorithms gets closer.

>
gl
000
Im
o
2

>
i

K&t fist HISI 1A W3 R=3 718 333

From the above analysis and (Figure 1), we can come to
a conclusion as following : If there occurs any update on
server, a transaction of mobile client is in one of three states
in relation to the updated data item. First, the transaction
has same data item with the updated data item. Second, the
transaction doesn’t have same data item and it is an active
transaction. Third, the transaction doesn’t have same data
item and its commit request has been issued. In first state,
our algorithm can early abort the transaction. In second
state, the updated data item doesn't have any influence on
the transaction processing in the both algorithms. In third
state, our algorithm can early commit the transaction. Thus,
our algorithm having advantage in the first and third state
can get better response time than the periodic algorithm.
However, if there exists no update on the server, the res-
ponse time of the both algorithms will be equal, because the
transactions in our algorithm are also committed only by GM
that has same Period with the periodic IR.

5. Conclusions

In this paper, we have presented a new algorithm to sup—
port local processing of read-only transaction based on as-
ynchronous invalidation report and periodic guide message
in mobile client/server database systems. Qur algorithm ad-
opted the asynchronous invalidation report to reduce tran-
saction latency and to decrease the number of aborted tran-
sactions. And, it uses periodic guide message to avoid the
uncertainty of waiting time which is unavoidable with the
asynchronous invalidation report. To ensure mobile clients
cache consistency, each broadcasting invalidation report has
its own sequence number and the periodic guide message
has the sequence number of the most recently broadcast
invalidation report. To reduce cache requests, when a mobile
client’s disconnection period is over the BroadcastingWin-
dowSize, instead of throwing out entire cache, the mobile
client simply sends Cache RefreshRequest that brings the
sequence number of the lastly received invalidation report.
And the server answers with the list of data items that up-
dated during the mobile client’s disconnection period. The
main contribution of our algorithm is to allow the local pro-
cessing of read-only transaction based on asynchronous ca—
che invalidation scheme by using the periodic guide messa-
ge. And the simulation results present the much smaller
number of read requests and aborted transactions, and it

shows the much better response time.

334 I=EAMel=t2li=EX C HI10-CH H3=2(20036)

References

[1] A. Kahol, S. Khurana, S. Gupta and P. Srimani, “An Ef-
ficient Cache Maintenance Scheme for Mobile Environ-
ment,” Proc. of International conference on Distributed Com-
puting Systems, April, 2000.

[2] D. Barbara and T. Imielinsky, “Sleepers and Workaholics :
Caching strategies in Mobile Environments,” Proc. of ACM
SIGMOD International Conference on Management of data,
1994

[3] E. Pitoura and P. K. Chrysanthis, “Scalable Processing of
Read-Only Transactions in Broadcast Push,” Proc. of in-
ternational Conference on Distributed Computing Systems,
1999.

[4] SangKeun Lee, Chong-Sun Hwang, HeonChang Yu, “Sup-
porting Transactional Cache Consistency in Mobile Data-
base Systems,” Proc. of the international Conference on
Data Engineering, 1996.

[5] K. K. Wy, P. S. Yu and M. S. Chen, “Energy-efficient Ca-
ching for Wireless Mobile Computing,” Proc. of the Inter-
national Conference on Data Engineering, 1996.

{6] J. Jing, A. Elmagarmid, A. Helal and R. Alonso, “Bit se-
quences - an adaptive cache invalidation method in mobile
client/sever environments,” Proc. of Mobile Net works and
Applications, 1997.

[71 Q. Hu and D. K. LEE, “Cache algorithms based on adaptive
invalidation reports for mobile environments,” Proc. of Clu-
ster Computing, 1998.

[8] G. Y. Liu and G. Q. McGuire Jr., “A mobility-aware dyna-
mic database caching scheme for wrieless mobile com—

puting and communications,” Proc. of Distributed and pa
rallel Databases, 1996.

[9] Shou-Chin Lo, Arbee L. P. Chen, “An Adaptive Access Me
thod for Broadcast Data under an Error-Prone Mobile En
vironment,” IEEE Transaction on Knowledge and Data En
gineering, July/August, 2000.

[10] P. A. Berstein, V. Hadzilacos and N. Goodman, Concur
rency Control and Recovery in Database Systems, Addi

son-Wesley.

dex=
e-mail : dotcom1126@naver.com
19813 sjEAReta AR eIH(F A
1987d n st 8hat(o] &AL
1992 mA g A ita}eka(o] shakal)
1988 SwAt#EStA AtA S 2ag
1993 ~ & A AR eta dAadasta

=] P
Fulg

TRk EdAD A, vloly 24

25 o o
e-mail : shmam@disys korea.ac.kr
1988 sTAtRSu 245 8F(F AL
1997 st A4k} sk (0] BHA AL
2002'd ne{cistal ZFE (o] gL
20023 ~3A s AH A 6EFA
2k
ARk AH B #X, olF HAFE, £ LFAA

