Abstract
VSField-associated term is a single or compound word whose terms occur in any document, and which makes it possible to recognize a field of text by using common knowledge of human. For example, human recognizes the field of document such as or , a field name of text, when she encounters a word 'Pitcher' or 'election', respectively We Proposes an efficient construction method of field-associated terms (FTs) for specializing field to decide a field of text. We could fix document classification scheme from well-classified document database or corpus. Considering focus field we discuss levels and stability ranks of field-associated terms. To construct a balanced FT collection, we construct a single FTs. From the collections we could automatically construct FT's levels, and stability ranks. We propose a new extraction algorithms of FT's for document classification by using FT's concentration rate, its occurrence frequencies.
인간은 문서전체를 읽지 않고 대표적인 단어를 보는 것만으로 정치나 스포츠 등의 분야를 정확히 인지할 수 있다. 문서전체를 대상으로 하지 않고 부분텍스트에서 출현하는 소수의 단어정보에서 문서의 분야를 정확히 결정하기 위해 분야연상어의 구축은 중요한 연구과제이다. 인간이 미리 분야체계를 정의하고, 각 분야에 해당하는 문서를 인터넷이나 서적을 통해 수집한다. 본 논문은 수집문서의 분야를 정확히 지시하는 분야연상어를 수집하는 방법을 제안한다. 문서의 분야결정 시점을 고려하여 분야연상어의 수준과 안정성 랭크에 대하여 논의한다. 학습데이터에서 분야연상어 후보의 각 수준을 자동으로 결정하고, 컴퓨터가 제시하는 분야연상어의 수준, 안정성 랭크, 집중률, 빈도정보를 이용하여 단일 분야연상어를 수집하는 방법을 제안한다.