DOI QR코드

DOI QR Code

Research about feature selection that use heuristic function

휴리스틱 함수를 이용한 feature selection에 관한 연구

  • 홍석미 (경희대학교 대학원 전자계산공학과) ;
  • 정경숙 (경희대학교 대학원 전자계산공학과) ;
  • 정태충 (경희대학교 컴퓨터공학과)
  • Published : 2003.06.01

Abstract

A large number of features are collected for problem solving in real life, but to utilize ail the features collected would be difficult. It is not so easy to collect of correct data about all features. In case it takes advantage of all collected data to learn, complicated learning model is created and good performance result can't get. Also exist interrelationships or hierarchical relations among the features. We can reduce feature's number analyzing relation among the features using heuristic knowledge or statistical method. Heuristic technique refers to learning through repetitive trial and errors and experience. Experts can approach to relevant problem domain through opinion collection process by experience. These properties can be utilized to reduce the number of feature used in learning. Experts generate a new feature (highly abstract) using raw data. This paper describes machine learning model that reduce the number of features used in learning using heuristic function and use abstracted feature by neural network's input value. We have applied this model to the win/lose prediction in pro-baseball games. The result shows the model mixing two techniques not only reduces the complexity of the neural network model but also significantly improves the classification accuracy than when neural network and heuristic model are used separately.

실생활에서 해결하고자 하는 문제에 대해 수많은 feature들이 수집되어지나 그 feature들을 모두 문제 해결에 활용하는 것은 어렵다. 모든 feature들에 대한 정확한 자료의 수집이 어려우며 관련된 feature들을 모두 학습에 이용할 경우 복잡한 학습 모델이 생성되어지며 좋은 수행 결과도 얻을 수 없다. 또한 수집된 자료들 간에는 상호 관계나 계층적 관계가 존재하는데, 경험적 지식이나 통계적 방법을 이용하여 feature들간의 관계를 분석함으로써 feature의 수를 줄일 수 있다. 휴리스틱 기법은 반복적인 시행 착오와 경험을 통한 학습으로써 미래가 불확실하고 완전한 정보를 갖고 있지 못할 때, 인간의 사고 기능을 통하여 기억이나 경험을 살려, 스스로 해결방안을 모색하면서 점차로 해에 접근해 가는 방법이다. 전문가들은 경험에 의한 의견 수렴 과정을 거쳐 해당 문제 영역에 접근 가능하며, 이러한 특성을 학습에 사용될 feature의 수를 줄이는데 활용할 수 있다. 전문가들은 원시 자료들을 이용하여 새로운 feature들을 생성할 수 있다 새로이 산출된 feature들과 원시 데이터 내의 feature들을 혼합하여 학습 모델 생성에 이용한다. 본 논문에서는 휴리스틱 함수를 이용하여 학습에 사용될 feature의 수를 줄이고, 추출된 feature들을 신경망의 입력값으로 사용하는 기계 학습 모델을 제시한다. 모델의 성능 평가를 위해 프로야구 경기의 승패 예측 문제를 이용하였다. 실험 결과는 신경 회로망과 휴리스틱 모델을 단독으로 사용했을 때 보다 두 기법을 혼합한 모델이 신경 회로망의 복잡성을 감소시킬 뿐 아니라 분류(classification)의 정확성이 향상되었다.아니라 Hep G2 세포에서도 명백히 단백질의 발현을 관찰할 수 있었다. 또한, Hep G2와 COS세포 모두에서 endogenous RXR의 발현이 일어남을 확인하였고 RXR expression plasmid를 transfection시켰을 때 두 세포 모두에서 단백질의 발현이 현저하게 증가되었다. Constitutive Androstane Receptor (CAR)에 의한 CYP2B의 PBRU 활성효과를 다르게 분화된 세포에서 차이가 일어나는지를 비교하기 위하여 CAR에 의해 매개되는 PBRU의 transactivation효과를 Hep G2와 COS세포에서 조사하였다. Hep G2 세포에서는 transfection된 CAR의 발현에 의해 firefly luciferase 보고단백질의 활성이 약 12배 증가하였다. CAR 발현유전자를 15 ng transfection하였을 때 주어진 보고유전자의 양에 대하여 최대반응을 나타내었고 CYP2B1PBRU가 제거된 CYP2C1 promotor/firefly luciferase를 보고유전자로 사용하였을 때는 CAR에 의한 luciferase의 활성이 나타나지 않았다. Hep G2와는 달리, COS세포에서는 transfection된 CAR의 발현이 PBRU에 의한 firefly luciferase보고단백질의 발현에 영향을 주지 못하였다. 이러한 결과들은 분화된 세포의 종류에 따라서 constitutive androstane receptor의 CYP2BPBRU 활성효과가 다르게 나타날 수 있음을 제시할 뿐만 아니라, 간세포에서 Phenobarbital에 의한 PBRU의 활성유도에 영향을 주는 endogenous 매개 인자들 중 CAR와 RXR과는 다

Keywords

References

  1. 서재순, '귀납적 추론을 이용한 프로야구 승패 예측 시스템 개발에 관한 연구', 경희대학교 석사 학위논문, 1994
  2. 홍석미, '프로야구 승패 예측을 위한 게임 시뮬레이터 개발에 관한 연구', 경희대학교 석사학위논문, 1997
  3. Tom M. Mitchell, 'Machine Learning,' The McGraw-Hill Companies, Inc., 1997
  4. Patric Henry Winston 'Artiticial Intelligence,' Addison wesley, 1992
  5. M. A. Hall, 'Correlation-based Feature Selection for Machone Learning,' Ph.D. diss. Waikato University, Department of Computer Science
  6. M. Riedmiller, 'Advanced supervised learning in multilayer perceptrons-from backpropagation to adaptive learning algorithm,' International Journal of computer standards and Interfaces, 16(5), pp.265-278, 1994 https://doi.org/10.1016/0920-5489(94)90017-5
  7. W. S. Sarle, Neural networks and statistical models, In Proc. of 12th Annual SAS Users Group International Conference, SAS Institute, pp.1538-1550, 1994
  8. Abraham Kandel and Gideon Langholz, 'Hybrid Architectures for Intelligent Systems,' CRC Press, Inc. 1992
  9. J. Bala, Huang and H. Vafaie, 'Hybrid Learning Using Genetic Algorithms and Decision Trees for Pattern Classification,' IJCAI conference, Montreal, pp.19-25, August, 1995