DOI QR코드

DOI QR Code

A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System

Ant Colony System에서 효율적 경로 탐색을 위한 지역갱신과 전역갱신에서의 추가 강화에 관한 연구

  • 이승관 (경희대학교 대학원 전자계산공학과) ;
  • 정태충 (경희대학교 컴퓨터공학과)
  • Published : 2003.06.01

Abstract

Ant Colony System (ACS) Algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem (TSP). In this paper, we introduce ACS of new method that adds reinforcement value for each edge that visit to Local/Global updating rule. and the performance results under various conditions are conducted, and the comparision between the original ACS and the proposed method is shown. It turns out that our proposed method can compete with tile original ACS in terms of solution quality and computation speed to these problem.

Ant Colony System(ACS) 알고리즘은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법이다. 이것은 greedy search뿐만 아니라 exploitation of positive feedback을 사용한 모집단에 근거한 접근법으로 Traveling Salesman Problem(TSP)를 풀기 위해 제안되었다. 본 논문에서는 전통적 전역갱신과 지역갱신 방법에 개미들이 방문한 각 간선에 대한 방문 횟수를 강화값으로 추가한 새로운 방법의 ACS를 제안한다. 그리고 여러 조건 하에서 TCS 문제를 풀어보고 그 성능에 대해 기존의 ACS 방법과 제안된 ACS 방법을 비교 평가해, 최적해에 더 빨리 수렴함을 실험을 통해 알 수 있었다.

Keywords

References

  1. A. Colorni, M. Dorigo and V. Maniezzo, An inverstigation of some properties of an ant algorithm, Proceedings of the Parallel Parallel Problem Solving from Nature Conference(PPSn 92), R. Manner and B. Manderick (Eds.), Elsevier Publishing, pp.509-520, 1992
  2. A. Colorni, M. Dorigo and V. Maniezzo, 'Distributed optimization by ant colonies,' Proceedings of ECAL '91-European Conference of Artificial Life, Paris, France, F. Varela and P. Bourgine(Eds.), Elsevier Publishing, pp.134-144, 1991
  3. B. Freisleben and P. Merz, 'Genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems,' Proceedings of IEEE International Conference of Evolutionary Computation, IEEE-EC'96, IEEE Press, pp.616-621, 1996 https://doi.org/10.1109/ICEC.1996.542671
  4. D. S. Johnson and L. A. McGeoch, 'The travelling salesman problem : a case study in local optimization,' in Local Search in Combinational Optimization, E. H. L. Arts and J. K. Lenstra(Eds.), New York : Wiley and Sons, 1997
  5. L. M. Gambardella, E. Taillard and M. Dorigo, 'Ant Colonies for QAP,' IDSIA, Lugano, Switzerland, Tech. Rep. IDSIA 97-4, 1997
  6. L. M. Gambardalla and M. Dorigo, 'Solving symmetric and asymmetric TSPs by ant colonies,' Proceedings of IEEE International Conference of Evolutionary Computation, IEEE-EC'96, IEEE Press, pp.622-627, 1996 https://doi.org/10.1109/ICEC.1996.542672
  7. L. M. Gambardalla and M. Dorigo, 'Ant Colony System : A Cooperative Learning approach to the Traveling Salesman Problem,' IEEE Transactions on Evolutionary Computation, Vol.1, No.1, 1997 https://doi.org/10.1109/4235.585892
  8. L. M. Gambardalla and M. Dorigo, 'Ant-Q : a reinforcement learning approach to the traveling salesman problem,' Proceedings of ML-95, Twelfth International Conference on Machine Learning, A. Prieditis and S. Russell (Eds.), Morgan Kaufmann, pp.252-260, 1995
  9. M. Dorigo, V. Maniezzo and A. Colorni, 'The ant system : optimization by a colony of cooperation agents,' IEEE Transactions of Systems, Man and Cybernetics-Part B, Vol.26, No.2, pp.29-41, 1996 https://doi.org/10.1109/3477.484436
  10. M. Dorigo and G. D. Caro, 'Ant Algorithme for Discrete optimization,' Artificial Life, Vol.5, No.3, pp.137-172, 1999 https://doi.org/10.1162/106454699568728
  11. M. Dorigo & L. M. Gambardalla, 'Ant Colonies for the Traveling Salesman Problem,' BioSystems, 43, pp.73-81, 1997 https://doi.org/10.1016/S0303-2647(97)01708-5
  12. P.-C. Kanellakis and C. H. Papadimitriou, 'Local search for the asymmetric traveling salesman problem,' Operations Research, Vol.28, No.5, pp.1087-1099, 1980
  13. S. Lin and B. W. Kernighan, 'An Effective Heuristic algorithm for the Traveling Salesman Problem,' Bell Telephone Laboratories, Incorporated, Murray Hill, N. J., 1997
  14. S. Lin and B. W. Kernighan, 'An Effective Heuristic algorithm for the traveling salesman problem,' Operations Research, Vol.21, pp.498-516, 1973 https://doi.org/10.1287/opre.21.2.498
  15. SeungGwan Lee, TaeUng Jung and TaeChoong Chung, 'Improved Ant Agents System by the Dynamic Parameter Decision,' Proceedings of IEEE International Conference on FUZZ-IEEE '01, IEEE Press, pp.666-669, 2001
  16. T. Stuzle and H. Hoos, 'The ant system and local search for the traveling salesman problem,' Proceedings of ICEC'97 IEEE 4th International Conference of Evolutionary, 1997
  17. T. Sttzle and M. Dorigo, 'ACO algorithm for the Traveling Salesman Problem,' In K. Miettinen, M. Makela, P. Neittaanmaki, J. Periaux, editors, Evolutionary Algorithm in Engineering and Computer Science, Wiley, 1999

Cited by

  1. Distortion Invariant Vehicle License Plate Extraction and Recognition Algorithm vol.11, pp.3, 2011, https://doi.org/10.5392/JKCA.2011.11.3.001
  2. Balance between Intensification and Diversification in Ant Colony Optimization vol.11, pp.3, 2011, https://doi.org/10.5392/JKCA.2011.11.3.100