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Comparisons of Parallel Preconditioners for the Computation
of Interior Eigenvalues by the Minimization of Rayleigh Quotient

Sangback Ma'- Ho-Jong Jang''

ABSTRACT

Recently, CG (Conjugate Gradient) scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising
technique for interior eigenvalues for the following eigenvalue problem,

Ax = Ax o))

The given matrix A is assummed to be large and sparse, and symmetric. Also, the method is very amenable to parallel computations. A
proper choice of the preconditioner significantly improves the convergence of the CG scheme. We compare the parallel preconditioners for the
computation of the interior eigenvalues of a symmetric matrix by CG-type method. The considered preconditioners are Point-SSOR, ILU (0)
in the multi-coloring order, and Multi-Color Block SSOR (Symmetric Succesive OverRelaxation). We conducted our experiments on the
CRAY-T3E with 128 nodes. The MPI (Message Passing Interface) library was adopted for the interprocessor communications. The test matrices
are up to 512%512 in dimensions and were created from the discretizations of the elliptic PDE, All things considered the MC-BSSOR seems
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to be most robust preconditioner.

7|19 = : Eigenvalue Problem, CG. Preconditioning. Parallel, Multi-Color Block SSOR

1. Introduction

Recently, an idea was proposed to find the interior eigen—
values by Rayleigh quotient minimization by CG (Conjugate
Gradient)-type method [1, 4-7]. Also, this method is very
amenable to the parallel computation. Iterative solution of
eigenvalue problems or linear systems requires a precondi-
tioning to accelerate the convergence [13]. Incomeple Chole-
sky factorization is one of the most popular technique. But
Incomplete Cholesky factorization is inherently serial, and
it might not converge for ill-conditioned matrices. Another
choice is the block-type parallel preconditioner, Multi-Color
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Block SSOR (Symmetric Successive OverRelaxarion) pre-
conditioner. Multi-coloring is a simple way to achieve the
parallelisim of order (IV ), where N is the order of the matrix.
Block SSOR is believed to reduce interprocessor communi—
cations.

We present results from our numerical experiments drawn
from the FDM discretizations of the elliptic partial differen—
tial equations. The experiments were done on the CRAY-
T3E of KISTI, Daejon, Korea.

2. Eigenproblem via Preconditioned GG

2.1 Minimization of Rayleigh Quotients
Consider the eigenvalue problem
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Ax = Ax, 2)

where A is a large sparse symmetric positive definite
matrix of dimension 7.
Let

0< A< AySAz< <A,

be the eigenvalues of equation (1), and let 2z, 23, 2z, be

the corresponding eigenvectors.
We recall that the eigenvectors of equation (1) are the
stationary points of the Rayleigh quotient

)
R(x) = 2% &)
X X

and the gradient of R(x) is given by

g(x) = [Ax— R(x)x].

X Tx
For an iterate x®, the gradient of R(x*®),

2
v R(x (k)) — g(k) — TW[ Ax (k)_R( x(k)) x(k)]’
X X
is used to fix the direction of descent p**? in which R(x)
is minimized.
These directions of descent are defined by

p = —g, ﬁ(k+1)=_g(k)+ﬁ(k)p(k)' E=1,2,,

T
L3
g(k) g()

2 D7 gD [1,10]. The subsequent ite-

where g(k) =
rate x**Y along p**V through x* is written as

P R S R S e

where 2 #*? is obtained by minimizing R(x **V),
T T
x(k) Ax(k)+2a(k+l) ﬁ(k+l) Ax(/e)
(k12 L (kD7 44 (k1)
R(x*1) = ta L Ap

T T
x(k) x(k)+2a(k+l)p(k+1) x(k)

2 T
+a(k+1) p(k+l) i)(leﬂ)

A detailed explanation to get the values for « "V can be
found in [7].

The performance of the CG method for computing the
eigenpairs of equation (1) can be improved by using a pre-
conditioner [2, 13]. The idea behind the PCG is to apply the
“regular” CG scheme to the transformed system

Ax=A%

where A =C~'AC™!, ¥= Cx, and Cis nonsingular sym-

metric matrix. By substituting x= C~!% into equation (3),

we obtain
AT -1 1~ AT A
~ C'AC A
Ry=—TL— = (4)
x C'C 'x xx

where the matrix A is symmetric positive definite. The
transformation equation (4) leaves the stationary values of
equation (3) unchanged, which are eigenvalues of equation
(2), while the corresponding stationary points are obtained
from 3= Cz; j=1,2,-+,n The matrix M= C?is called
the preconditioner. There are a number of choices of M
ranging from simple to complicated forms. In this paper,
Multi-Color Block SSOR preconditioner is used with parallel
computation aspect. The PCG algorithm for solving the smal-
lest eigenpair with implicit preconditioning is summarized
in [7]. After the smallest eigenvalue is found, we apply the
orthogonal deflation to compute the next eigenvalues.

3. ILU (0} factorization

Meijerink and Van. der Vorst [8] introduced a so-called
Incomplete LU (ILU) preconditioner for symmetric matrices.
The following is a modification of the original ILU for
nonsymmetric matrices, as described in [3]. Let A = LU +
N, where L;;=U;;=0if A,;=0and N;;=01if A,;+0.
Let NZ(A), the nonzero pattern of A, denote the set of pairs
of (i, j) for which Aj;j, the(i,j) entry of A, is nonzero.

—

.Fori=1 -, Untii N Do

2. Forj =1+, Until N Do

3. If (G, j) belongs to NZ (A)) then

4. siy= A — 2 meAml LUy
5. if (i2j)then L,;=s;;

6. if (< 7) then Uyy= syl Ly
7. Endif

8. Endfor

9. Endfor

(Algorithm 3.1) ILU Factorization

4, Point-SSOR algorithm

1. Choose xg
2 Fori=0 - Do
(D—wE)x_+ 1 = (1 —w)D+ wF)x;+wb 5)
T

(D—wF)x; =1 —wD+ a)E)x_+ 1 +wba
i+

Endfor

(Algorithm 3.2) Point-SSOR Let A = D - E - F, where D is the
diagonal part —E, is the lowertriangular part and -F
the uppertriangular part
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5. Multi-Color Block SSOR (Symmetric Successive
OverRelaxation) Method

Multi-Coloring is a way to achieve parallelism of order
N, where N is the order of the matrix. For example, it is
known that for 5-point Laplacian we can order the matrix
in 2-colors so that the nodes are not adjacent with the nodes
with the same color. This is known as Red/Black ordering.
For planar graphs maximum four colors are needed.

Blocked methods are useful in that they minimize the
interprocessor communications, and increases the conver-
gence rate as compared to point methods. SSOR is a sym-
metric preconditioner that is expected to perform as effi-
ciently as incomplete Cholesky factorization combined with
blocking. Instead we need to invert the diagonal block. In
this paper we used the MA48 package from the Harwell
library, which is a direct method using reordering strategy
to reduce the fill-ins. Since MA48 type employ some form
of pivoting strategy, this is expected to perform better for
ill-conditioned matrices than Incomplete Cholesky factori-
zation, which does not adopt any type of pivoting strategy.

SSOR needs a o parameter for overrelaxation. However,
it is known that the convergence rate is not so sensitive to
the « parameter.

Let the domain be divided into L blocks. Suppose that we
apply a multi—coloring technique, such as a greedy algorithm
described in [11], to these blocks so that a block of one color
has no coupling with a block of the same color. Let D; be
the coupling within the block j, and color(j) be the color of
the j-th block. We denote by Ujw, k = 1, g, j < k and L;x,
k < j the couplings between the j-th color block and the
k-th block.

Then, we can describe the Multi~Color Block SSOR as
follows.

Let g be the total number of colors, and color (i), i = 1, L, be the
array o the color for each block.

1. Choose w, and > 0

2. For i > 0 Until Convergence Do

3. For kolor = 1, g Do

4 Forj=1 L Do

5. if (color (j) == kolor) then

6. ( 0179); = D7 (b= 0% 20 Fibior Ljatt 10172)
7. endif

8 Endfor

9. For kolor = 1, q Do

10. Forj=1 L Do

11 if (color (j) == kolor) then

i (wiv1); = D N uirya— @ * 20 kb Ukt ie1)
13 endif

o
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14 Endfor
15 Endfor
16, Endfor

(Algorithm 5.1) Multi-Color Block SSOR

Note that the innermost loop in line six and seven can
be executed in parallel.

6. Experiments

6.1 Test problems
® Problem 1 Elman's problem [3]

—(buy ) —(cuy),+fu = g (6)
2= 0,1x(0,1
u=10 on 682
1

where b = exp(-xy), ¢ = exp (xy), f= +zy)

and g is such that exact solution

u = xexp (xy)sin (7x) sin (7y)

e Problem 2 Cylinder Shell problem from Harwell/
Boeing Collection
1. sirmgdml.dat

6.2 Results

<Tables 1>, <Tables 2> contain the timings for the three
preconditioners. We used MPI (Message Passing Machine)
library for the interprocessor communications. For the first
problem we used the Block-Row mapping for the graph
partitioning of the matrix. For the second problem we have
used the Metis code developed by V. Kumar of the Uni-
versity of Minnesota. The number of colors needed is two
for the first problem and reaches 6 for the three dimensional
matrix of problem two. For the multi-coloring we have
adopted the greedy heuristic as described in [11]. The &
parameter was set to be 10°° for stopping criterion. ‘X’ stands
for the cases with insufficient memory, and ‘SL’ for the cases
where the convergence was not obtained within reasonable
amount of time.

The first problem is a well-conditioned matrix. However,
the second problem is ill-conditioned, coming from Cylinder
Shell problem of Harwell/Boeing collection, with the _condj-
tion number of 1.8% It is reported in [2] that for the second
problem Incomplete Cholesky Factorization preconditioning
does not achieve the convergence. But MC-BSSOR does
achieve the convergence partially. As for the o parameter

we have set » to be 1.
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For the inversion of diagonal blocks in Block SSOR me-
thod, we have used the MA48 routine of the Harwell library,
which adopts direct methods for sparse matrices with the
reordering strategy reducing fill-ins. The cost of the MA48
is roughly proportional to LZ, where L is the size of the
matrix. Since L is roughly N/p we expect a quadratic de-

crease with the increasing number of processors.

{Table 1) Problem 1 with FDM

p=4 | p=8 | p=16 | p=2 | p=-#4
Point-SSOR/MC-ILU(0)/MC-BSSOR

N =128° 1174143190 102/80/07 | 110/7.0/100 | 1358451 | 19.7/115/66
N = 2567 1943/736/139 | 54.0/40.5/61.7 | 38.7/28.2/56.6 | 57.2/22.7/196 | 140/25.3/15.1
N = 5122 X X 184/135/225 | 129/85.4/118 | 118/69.7/66.9

{Table 2> Cylinder Shell problem from the Hatwell/Boeing
Collection

p=4 | p=8 | p=16 | p=3 | p=#&
Point-SSOR/MC-ILU(0)/MC-BSSOR

| strmadmt [ sL/sLoe [ swssed | susust [susLised] suswst |

7. Conclusions

® For the first problem with the small number of processors
Multi-Color ILU (0) gives better performance, but with
the large number of processors MC-BSSOR shows the
best performance. For the cylinder shell problem only the
MC-BSSOR converges partially. We believe that for the
shell problem we need a different approach.

e Due to the nature of MA48 library, we expect MC-BSS
OR to be scalable with the increasing number of proce-
SSOrs.

e QOut of the three preconditioner considered the MC-BSS
OR seems to be the most robust preconditioner.

® Qur CG-type method is far simpler than the Jacobi-Da-

vidson method, in terms of the preconditioning.
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