DOI QR코드

DOI QR Code

부추가 Streptozotocin 유발 당뇨쥐의 지질과산화와 항산화방어체계에 미치는 영향

Effect of buchu (Allium tuberosum) on lipid peroxidation and antioxidative defense system in streptozotocin-induced diabetic rats

  • 송영선 (인제대학교 의생명공학대학 식품생명과학부, 식품과학연구소 및 바이오헬스소재센타) ;
  • 정현실 (인제대학교 의생명공학대학 식품생명과학부, 식품과학연구소 및 바이오헬스소재센타) ;
  • 노경희 (인제대학교 의생명공학대학 식품생명과학부, 식품과학연구소 및 바이오헬스소재센타) ;
  • 조혜연 (인제대학교 의생명공학대학 식품생명과학부, 식품과학연구소 및 바이오헬스소재센타) ;
  • 박지영 (인제대학교 의생명공학대학 식품생명과학부, 식품과학연구소 및 바이오헬스소재센타) ;
  • 최춘연 (인제대학교 의생명공학대학 식품생명과학부, 식품과학연구소 및 바이오헬스소재센타) ;
  • 권태완 (인제대학교 의생명공학대학 식품생명과학부, 식품과학연구소 및 바이오헬스소재센타)
  • 발행 : 2003.06.01

초록

STZ(50mg/kg BW)을 대퇴부 근육에 주사하여 당뇨를 유발시킨 당뇨 흰쥐(Sprague Dawley, 수컷)에서 10% 부추 첨가식이가 혈액과 적혈구, 간조직의 지질과산화 정도와 항산화 효소계 활성 및 GSH 수준에 미치는 영향을 조사하였다. 실험군은 정상군, 당뇨대조군, 당뇨부추군의 3군 (n=10)으로 나누었으며 4주간 사육한 후 실험에 이용하였다. STZ로 유발된 당뇨대조군의 적혈구, 간과 LDL의 TBARS와 conjugated dienes 함량은 대조군에 비해 증가하였으나, 당뇨부추군에서는 적혈구의 conjugated dienes 수준이 유의적으로 감소하였고(p<0.05), 간과 LDL의 TBARS 수준은 당뇨대조군에 비해 다소 감소하여 정상대조군과 차이를 보이지 않았다. 간에서의 항산화 효소계 중 SOD 활성은 대조군에 비해 당뇨대조군에서 증가하였고, catalase 활성은 당뇨대조군에 비해 부추를 섭취한 당뇨군에서 유의적으로 증가하였다. GSH-px와 GSH-red 활성은 대조군에 비해 당뇨대조군에서 유의적으로 감소하였으나(p<0.05), 당뇨부추군에서는 다소 증가하였다. 간의 GSH 함량은 대조군과 당뇨대조군에 비해 당뇨부추군에서 유의적으로 증가하였으며(p<0.01), 혈장의 GSH 함량은 대조군에 비해 당뇨군에서 유의적으로 감소하였다(p<0.05). GOT와 GPT 활성은 정상대조군에 비해 당뇨대조군에서 급격히 증가하였으나 당뇨부추군에서는 정상군 수준으로 감소하였다. 이상의 결과로 미루어 볼 때, 부추는 간의 항산화효소계를 활성화시키고 간조직의 GSH수준을 높게 유지하여 고혈당과 STZ로부터 유발된 산화적 스트레스(지질과산화)를 해소함으로써 당뇨로 인한 합병증 예방 및 치료를 위한 식품자원으로 활용이 가능한 것으로 사료된다.도 및 동맥경화지수를 낮추는 효과가 있고, HDL- 콜레스테롤 농도를 증가시키는 효과가 있는 것으로 나타났다.각된다. 7) 발병부위는 대부분 막성유리연의 중간부 및 전방부 1/3에서 발생하였고 수술 결과는 저류낭종 82례 중 25례(30.5%)에서만 낭종의 파열 없이 완전제거가 가능하였으며 유표피낭종 30례 중에서는 21례(70.0%)에서 완전제거가 가능했던 것으로 나타나 저류낭종이 유표피낭종에 비해 낭종을 파열시키지 않고 완전히 제거하는 것이 더욱 어려움을 알 수 있었다. 따라서 저류낭종의 경우 낭종의 절제가 어려운 경우 수술방법으로 조대술(marsupialization)을 시행하는 것도 의미가 있을 것으로 사료된다. 8) 수술 전 후의 음성만족도를 비교한 조사 결과 조사가 가능했던 82례 중 49례(52.0%)에서 만족할 만한 결과를 보였다고 답하여 성대 폴립수술 후의 만족도와 유사한 결과를 보였다.14%, V. mimicus 10%, V. parahaemolyticus 4%, E. coli O157:H7 48%에서 증식되지 않았지만 S. typhimurium은 50%에서도 집락이 검출되었다. 젖산의 경우 V. vulnificus 2%, V. cholerae non-O1 3%, V. mimicus 4%, V. parahaemolyticus 3%, S. typhimurium 14%, E. coli O157:H7 17%에서 증식되지 않았다. 식초와 젖산은 낮은 농도에서 생선회 식중독 유발에 주 원인균이 되는 Vibrio 속의 생육을 억제하였고, S. typhimurium과 E. coli O157:H7의 생육은 비교적 약하게 나타났다.은 고농도로 갈수록 심한 영향을 미쳤으며 저 농도 에서도 폭로시간이 길어짐에 따라 나타나는 SO$_2$의영향이

The pathogenic effort of high glucose, possibly in concert with fatty acids, is mediated to vascular complications of diabetes via increased production of reactive oxygen species(ROS), reactive nitrogen species(RNS), and subsequent oxidative stress. This study was carried out to investigate the suppressive effect of buchu(Allium tuberosum) on oxidative stress in streptozotocin(STZ)-induced diabetes in Sprague Dawley male rats. The effect of buchu supplementation (10%) on lipid peroxidation, and antioxidative defense system in blood and liver was compared among normal rats fed basal diet(normal) and diabetic rats fed basal diet(DM-control) or 10% buchu-supplemented diet(DM-buchu). Diabetes was experimentally induced by the femoral muscle injection of 50 mg STZ per kg of body weight. Animals were sacrificed after 4 wks of experimental diets feeding. The induction of diabetes by STZ elevated the level of lipid peroxidation represented by thiobarbituric acid-reactive substances(TBARS) and conjugated dienes in plasma, LDL, liver, and erythrocytes. 10% buchu-supplemented diet significantly reduced the levels of conjugated dienes in erythrocytes(p<0.05) and lowered TBARS in liver and LDL to the levels of control. Induction of diabetes by STZ elevated Mn-superoxide dismutase(Mn-SOD) activity and lowered activities of glutathionine reductase(GSH-red) and glutathionine peroxidase(GSH-px). Catalase activity was not affected by the induction of diabetes by STZ. However, buchu supplementation to diabetic rats significantly elevated catalase activity(p<0.05) and slightly elevated GSH-px and GSH-red activities in liver. GSH levels of blood and liver were lowered or not changed by induction of diabetes by STZ, respectively, while buchu supplementation to diabetic rats significantly elevated hepatic GSH level (p<0.05). In conclusion, it can be concluded that buchu might be a food source to attenuate oxidative stress in diabetic patients by inhibiting lipid peroxidation, by increasing hepatic GSH level, and by inducing anti-oxidative enzyme systems.

키워드

참고문헌

  1. Aebi, H. E. 1983. Catalase. pp.282-284, In Bergmeyer, H. U. (ed.). Method in Enzymatic Analysis. Verlag Chemic, Weinheim
  2. Ahn, J. M., S. H. Lee and Y. S. Song. 2001. Biological functions in leek. Food Industry and Nutrition 6, 68-73
  3. Baynes, J. W. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412 https://doi.org/10.2337/diabetes.40.4.405
  4. Buege J. A and S. D. Aust. 1978. Microsomal lipid peroxidation. pp.302-306, In Fleischer S., and L. Packer (eds.), Methods in Enzymology, Vol. 52, Academic Press, New York
  5. Claire, B. K, Charles, C. and Claudine, B. 1997. Combined effects of lipid peroxidation and antioxidant status on carotid atherosclerosis in a population aged 59-71 y: The EVA study. Am. J. Clin. Nutr. 65, 121-127
  6. Cho, S. Y, J. Y. Park, E .M. Park, M. S. Choi, M. K. Lee, S. M. Jeon, M. K. Jang, M. J. Kim and Y B. Park. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clinica Chemica Acta 317, 109-117
  7. Choi, J. H., H. M. Choi and H. S. Son. 1994. Fatty acid composition and functional properties of low density lipoprotein and oxidized LDL from human plasma. J. Korean Soc. Food Nutr. 23, 402-408
  8. Donna, O., E. Yorulmaz, H. Pekel and N. Suyugul. 2002. Blood and lens lipid peroxidation and anti-oxidant status in normal individuals, senile and diabetic cataractous patient. Curr. Eye Res. 25, 9-16 https://doi.org/10.1076/ceyr.25.1.9.9960
  9. EI-Swefy, S., E. J. Schaefer, L. J. Seman, D. van Dongen, A. Sevanian, D. E. Smith, J. M. Ordovas, M. EI-Sweidy and M. Meydani. 2000. The effect of vitamin E, probucol, and lovastatin on oxidative status and aortic fatty lesions in hyperlipidemic-diabetic. hamsters. Atherosclerosis 149, 277-286 https://doi.org/10.1016/S0021-9150(99)00331-7
  10. Evans, J. L., I. D. Goldfine, B. A. Maddux and G. M. Grodsky. 2003. Are oxidative stress -activated sig-naling pathway mediators of insulin resistance and beta-cell dysfunction? Diabetes 52, 1-8 https://doi.org/10.2337/diabetes.52.1.1
  11. Food Science Institute of Inje University. 1998. Devel-opment of leek processing technology and the formulation of leek-containing food products. pp.6, Research report supported by Dept. Agriculture and Fishery
  12. Cardia, M. J., P. M. McNamara and T. Gordon. 1974. Morbidity in mortality in diabetics in the Framingham population. Diabetes 23, 105-111 https://doi.org/10.2337/diab.23.2.105
  13. Griendling, K. K and R. W. Alexander. 1997. Oxi-dative stress and cardiovascular disease. Circulation 96, 3264-3275
  14. Hong, S. A. and S. K Wang. 2000. Effect of Korean leek and dietary fat on plasma lipid and platelet aggregation in hypercholesterolemic rats. Korean J. Nutr. 33, 374-385
  15. Hunt, J. V., C. C. T. Smith and S. P. Wolff. 1990. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39, 1420-1424 https://doi.org/10.2337/diabetes.39.11.1420
  16. Inger, C. and M. Bengt. 1985. Methods in Enzymology. pp.484-490, Academic Press, New York
  17. Jackson, A. A. 1986. Blood glutathione in severe malnutrition in childhood. Trans. R. Soc. Trap. Med. Hyg. 80, 911-913 https://doi.org/10.1016/0035-9203(86)90256-7
  18. Jain, S. K, R. McVie, J. Duett and J. J. Herdst. 1989. Erythrocyte membrane lipid peroxidation and gly-cosylated hemoglobin in diabetes. Diabetes 38, 1539-1543 https://doi.org/10.2337/diabetes.38.12.1539
  19. Kadowak, M., N. Harada and S. Takahashi. 1989. Differential regulation of degradation of myofibrillar and total protein in dietary protein and starvation. J. Nutr. 119, 471-477
  20. Kim, T. W. 1994. Functional properties of low density lipoprotein(LDL) and oxidized-LDL. J. Korean Soc. Food Nutr. 23, 530-539
  21. Kono, Y and I. Fridovich. 1982. Superoxide radicals inhibit catalase. J. BioI. Chem. 257, 5751-5754
  22. Koo, J. R. and N. D. Vaziri. 2003. Effects of diabetes, insulin and antioxidants on NO synthase abundance and NO interaction with reactive oxygen species. Kidney Int. 63, 195-201 https://doi.org/10.1046/j.1523-1755.2003.00728.x
  23. Lee, S. Z., S. H. Park and H. S. Lee. 2001. Changes in in vivo lipid peroxidation and antioxidant defense system in streptozotocin-induced diabetic rats: a time course study. Kor. J. Nutr. 34, 253-264
  24. Lowry, O. H., N. J. Rosebrough, A L. Farr and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. BioI. Chem. 193, 265-275
  25. Mak, D. H. and K. M. Ko. 1997. Alterations in sus-ceptibility to carbon tetrachloride toxicity and hepatic antioxidant/ detoxification system in streptozotocin-induced short-term diabetic rats: efficacies of insulin and Schisandrin B treatment. Mol. Cell Biochem. 175, 225-232 https://doi.org/10.1023/A:1006883919687
  26. Ohkawa, H., N. Ohishi and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  27. Oyanagui, Y 1948. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 4, 290-296
  28. Park, G. Y, S. J. Lee and J. G. Im. 1997. Effect of green tea catechin on Cytochrome $P_{450}$, Xanthine oxidase activities in liver and liver damage in streptozotocin induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 26, 901-907
  29. Perez, D. D, P. Strobel, R. Foncea, M. S. Diez, L. Vasquez, I. Urquiaga, O. Castillo, A Cuevas, A San Martin and F. Leighton. 2002. Wine, diet, antioxidant defenses, and oxidative damage. Ann. N. Y. Acad. Sci. 957, 136-145 https://doi.org/10.1111/j.1749-6632.2002.tb02912.x
  30. Prosky, L., N. Asp and T. F. Scheizer. 1988. Determination of insoluble, soluble and total dietary fiber in foods and food products:lnterlaboratory study. J. Assoc. Off Anal. Chem. 71 1017-1023
  31. Rhee, S. J., W. K Choe, B. K. Chat J. A Yang and W. Y. Kim. 1996. Effect of vitamin E and selenium on the antioxidative defense system in streptozotocin-induced diabetic rats. Kor. J. Nutr. 29, 22-31
  32. Rudy, J. R. and D. M. Sheldon. 1975. Effect of glutathione depletion on tissue deposition of meth-ylmercury in rats, Toxicol. and Appl. Pharmacol. 31, 505-519 https://doi.org/10.1016/0041-008X(75)90274-4
  33. Ryu, S. H. 1997. Antioxidative effects of kimchi and kimchi ingredients in vitro and in vivo systems. M.S. Thesis, Inje Univ., Cimhae, Korea
  34. Savickiene, N., Dagilyte, A, Lukosius, A and Zitkevicius, V. 2002. Importance of biologically active compounds and plants in the prevention of diabetes mellitus. Medicina. 38, 970-975
  35. Sener, G., O. Sacan, R. Yanardag and G. Ayanoglu-Dulger. 2002. Effects of chard(Beta vulgaris L. var. cicla) extract on oxidative injury in the aorta and heart of streptozotocin-diabetic rats. J. Med. Food 5, 37-42 https://doi.org/10.1089/109662002753723205
  36. Seyer, H. K. 1977. Renal hypertrophy in experimental diabetes relation to severity of diabetes. Diagetologia 13, 141-143
  37. Shanghai Science & Technical Publisher. 1985. The dictionary of Chinese drugs (Zhong Yao Da Ci Dian). pp,449, Vol. 1. Shougakukan, Tokyo
  38. Shin, H. S. 1992. Food analysis, pp.69-87, Shinkwang, Seoul
  39. Smith, O. L. K, C. Y Wong. and R. A Gelfand. 1989. Skeletal muscle proteolysis in rats with acute stre-ptozotocin-induced diabetes. Diabetes 38, 1117-1122 https://doi.org/10.2337/diabetes.38.9.1117
  40. Sochor, M., S. Kunjara and N. Z. Baquer. 1991. Regulation of glucose metabolism in livers and kid-neys of NOD mice. Diabetes 40, 1467-1471 https://doi.org/10.2337/diabetes.40.11.1467
  41. Steer, K. A, M. Sochor and P. Mclean. 1985. Renal hypertrophy in experimental diabetes changes in pen-tose phosphate pathway activity. Diabetes 34, 485-490 https://doi.org/10.2337/diabetes.34.5.485
  42. Takasawa, S. H. Yamamoto, K Terazono and H. Okamoto. 1986. Novel gene activated in rat insuli-nomas. Diabetes 35, 1178-1180 https://doi.org/10.2337/diabetes.35.10.1178
  43. a-Tocopherol, $\beta$-carotene Prevention Study Group. 1994. The effect of vitamin E and beta-carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029-1035 https://doi.org/10.1056/NEJM199404143301501
  44. Wenzel, D., S. Kuntz, M. D. Brendel and H. Daniel. 2000. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res. 60, 3823-3831
  45. Wolft S. P. and R. T. Dean. 1987. Glucose autox-idation and protein modification: the potential role 'autoxidative glycosylation' in diabetes mellitus. Biochem. J. 245, 243-250
  46. Yang, F., W. J. de Villiers, C. J. McClain and G. W. Varilek. 1998. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and le-thality in a murine model. J. Nutr. 128, 2334-2340
  47. Yeo, H. J. 1997. Effect of dietary polyunsaturated/saturated fatty acid on membrane lipid peroxidation of red blood cells and hepatic intracellular organelles in streptozotocin induced diabetic rats. J. Diabetes 21, 271-279

피인용 문헌

  1. Anti-Oxidative and Anti-inflammatory Effect of Combined Extract and Individual Extract of GamiSaengmaeksan vol.31, pp.1, 2016, https://doi.org/10.6116/kjh.2016.31.1.69.
  2. Effects of Dietary Antioxidant Supplementation on the Growth, Serum Chemistry, Body Composition and Challenge Test Results of Juvenile Rockfish Sebastes schlegelii vol.49, pp.3, 2016, https://doi.org/10.5657/KFAS.2016.0323
  3. The Study on Biological Activities of Yeonsan Ogye listed on Dong-ui-bo-gam vol.30, pp.5, 2015, https://doi.org/10.6116/kjh.2015.30.5.23.
  4. Protective Effect of Dietary Buchu (Allium tuberosum Rottler) on Oxidative Stress and Lipofuscin Formation in Streptozotocin-Induced Diabetic Rats vol.32, pp.8, 2003, https://doi.org/10.3746/jkfn.2003.32.8.1337
  5. Effect of Young Barley Leaf Powder on Glucose Control in the Diabetic Rats vol.27, pp.1, 2016, https://doi.org/10.7856/kjcls.2016.27.1.19
  6. The Effect of Aerobic Exercise and Allium Tuberosum Intake on Blood Lipids, MDA and Antioxidant Enzyme in Rats vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.245
  7. Comparison of Effect of Water and Ethanolic Extract from Roots and Leaves of Allium hookeri vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1808