DOI QR코드

DOI QR Code

COG 알고리즘을 통한 해양성 Euryarchaeota의 유전적 조성 분석

Genetic Composition Analysis of Marine-Origin Euryarchaeota by using a COG Algorithm

  • 이재화 (신라대학교 공과대학 생명공학과, 신라대학교 마린바이오산업화지원센터) ;
  • 이동근 (신라대학교 공과대학 생명공학과, 신라대학교 마린바이오산업화지원센터) ;
  • 김철민 (부산대학교 유전공학연구소부설 생물정보학센터, 부산대학교 의과대학부설 부산지놈센터) ;
  • 이은열 (경성대학교 공과대학 식품공학과)
  • 발행 : 2003.06.01

초록

고세균 (Archaea)의 보존적 유전자를 파악하고 각 분류 단계별로 추가되는 보존적 유전자를 밝히기 위해 그리고 해양성 Euryarchaeota와 육지성 Euryarchaeota의 유전자 조성을 비교하기위해 COG (clusters of orthologous groups of proteins) 알고리즘을 이용하였다. 총 9종의 고세균이 공통적으로 보유하는 보존적 유전자는 340개로 나타났고 8종의 Euryarchaeota는 388개의 유전자가 보존적이었다. Euryarchaeota 각 종이 보유하는 orthologous에 대한 보존적 유전자의 비율은 20.73∼31.54%로 나타났다. 세균과 S.cerevisiae에는 없고 고세균 수준에서만 공통적인 265개 COG의 조성은 유전정보의 보존과 처리에 관여하는 COG가 94개 (35.5%)이고 대사에 관여하는 COG가 82개 (30.9%)로 유전정보와 물질대사와 관여하는 COG의 보존성이 높은 것으로 나타나 고세균이 독특한 생명체계를 이루고 있는 것으로 사료되었다. Euryarchaeota를 Crenarchaeota와 비교하면 핵산대사에서는 상당한 차이를 보이며 유전정보의 저장과 처리에서는 큰 차이가 없는 것으로 판단되었다. 해양성 Euryarchaeota의 보존적 COG는 기능분류별 종류가 육지성 Euryarchaeota와 달랐고 물질대사 관련 COG의 경우 육지성이 해양성보다 다양한 것을 알 수 있었다. 그리고 육지성과 해양성 Euryarchaeota는 탄수화물대사 등을 비롯한 생리적 측면에서 서로 차이가 있을 가능성이 높을 것으로 사료되었다. 본 연구는 해양 극한미생물인 해양성 Euryarchaeota의 기원과 분류단계에 따른 보존적 유전자를 파악하는데 도움을 줄뿐만 아니라 향후 해양미생물 등의 유용유전자 탐색 등에서도 Manco (Arch. Biochem. Biophy. 373, 182 (2000)) 등의 보고와 같이 충분한 연구가치가 있는 것으로 사료되었다.

To figure out the conserved genes and newly added genes at each phylogenetic level of Archaea, COG (clusters of orthologous groups of proteins) algorithm was applied. The number of conserved genes within 9 species of Archaea was 340 and that of 8 species of Euryarchaeota was 388. Many of conserved 265 COGs, which are specific to Archaea and absent in Bacteria and S. cerevisiae, were concerned with 'information storage and processing' (94 COG, 35.5%) and 'metabolism' (82 COG, 30.9%). COGs related to these functions were assumed as highly conserved and permit peculiar life form to Archaea. It seemed that there was some difference in 'nucleotide transport and metabolism' and there was little difference in 'information storage and processing' between Euryarchaeota and Crenarchaeota. Marine-origin Euryarchaeota showed different conserved COGs with terrestrial Euryarchaeota. Conserved COGs, related to carbohydrate transport and metabolism and others, were different between marine- and terrestrial-origin Euryarchaeota. Hence it was assumed that their physiology might be different. This study may help to understand the origin and conserved genes at each phylogenetic level of marine-origin Euryarchaeota and may help in the mining of useful genes in marine Archaea as Manco et al. (Arch. Biochem. Biophy. 373, 182 (2000)).

키워드

참고문헌

  1. Darland, G., T. D. Brock, W. Samsonoff and S. F. Conti. 1970. Athermophilic acidophilic mycoplasm isolated from a coal refuse pile. Science 170, 1416-1418 https://doi.org/10.1126/science.170.3965.1416
  2. Dib R., J. M. Chobert, M. Dalgalarrondo, G. Barbier and T. HaertIe. 1998. Purification, molecular properties and specificity of a thermoactive and ther-mostable proteinase from Pyrococcus abyssi, strain st 549, hyperthermophilic archaea from deep-sea hydrothermal ecosystem. FEBS Lett. 431, 279-284 https://doi.org/10.1016/S0014-5793(98)00782-0
  3. Durbin, R. S., R Eddy, A. Krogh and G Mitchison. 1998. Biological sequence analysis (Probabilistic mod-els of proteins and nucleic acids, pp. 134-159 Cambridge University Press. London
  4. Eisen, J. A. 1998. Phylogenomics: improvoing func-tional predictions for uncharacterized genes by evolutionary analysis, Genome Res. 8, 163-187 https://doi.org/10.1101/gr.8.3.163
  5. Fraser, C. M., J. D. Gocayne, O. White, M. D. Adams, R A. Clayton, R D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley, J. M. Fritchman, J. F. Weidman, J. V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T. R. Utterback, O. M. Saudek, T. A. Phillips, J. M. Merrick, J.-F. Tomb, D. A. Dougherty, K. F. Bott, P. -C. Hu, T. S. Lucier, S. M. Peterson, H. O. Smith, C. A. Hutchison III and J. C. Venter. 1995. The minimal gene complement of mycoplasma genitaiium. Science 270, 397-403 https://doi.org/10.1126/science.270.5235.397
  6. ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria
  7. Gonzalez, J. M., Y. Masuchi, F. T. Robb, J. W. Ammerman, D. L. Maeder, M. Yanagibayashi, J. Tamaoka and C. Kato. 1998. Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophile 2, 123-130 https://doi.org/10.1007/s007920050051
  8. Gribaldo, S. and P. Cammarano. 1998. The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein targeting machinery J. Mol. Evol. 47, 508-516 https://doi.org/10.1007/PL00006407
  9. Gupta, R. S. 1998. Life's third domain (Archaea): An established fact or an endangered paradigm?. Theor. Populo BioI. 54, 91-104 https://doi.org/10.1006/tpbi.1998.1376
  10. Gupta R. S. 1998. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of procaryotic organisms. Molecular BioI. 29, 695-707
  11. Henikoff, S., E. A Greene, B. S. Pietrokovski, T. K. Attwood and L. Hood. 1997. Gene Families: The Taxonomy of Protein Paralogs and Chimeras, Science 278, 609-614 https://doi.org/10.1126/science.278.5338.609
  12. http://www.genoscope.cns.fr/Pab/
  13. http://www.ncbi.nlm.nih.gov/COG/
  14. http://www.tigr.org/CMR2/BackGround/arg.html
  15. Kang, H.-Y., C.-J. Shin, B.-C. Kang, J.-H. Park, D.-H. Shin, J.-H. Choi, H.-G. Cho, J.-H. Cha, D.-G. Lee, J.-H. Lee, H.-K. Park and C.-M. Kim. 2002. Investigation of Conserved Gene in Microbial Ge-nomes using in silico Analysis, Korean Journal of Life Sci. 5, 610-621
  16. Kimura, M. 1983. The neutral theory of molecular evolution, pp. 65-97, Cambridge University Press
  17. Koonin, E. V., A. R. Mushegian, M. Y. Galperin and D. R. Walker. 1997. Comparison of archaeal and bac-terial genomes: Computer analysis of protein se-quences predicts novel functions and suggests a chimeric origin for the archaea. Mol. Microbiol. 25, 619-637 https://doi.org/10.1046/j.1365-2958.1997.4821861.x
  18. Lee, D.-G., H.-Y. Kang, J.-H. Lee and C.-M. Kim. 2003. Detection of Conserved Genes in Proteobacteria by using a COG Algorithm. Korean J. Biotechnol. Bioeng. 17, 560-565
  19. Lee, D.-G., H.-Y. Kang, S. Kim, S.-H. Lee, C.-M. Kim, S.-J. Kim and J.-H. Lee. 2003. Classification of Archaebacteria and Bacteria using a gene content tree approach. Korean J. Biotechnol. Bioeng. 18, 39-44
  20. Lee, W.-J. and K. Ohwada. 1995. Studies on the ecological characteristics of marine bacteria isolated from deep sea. J. Korean Fish. Soc. 28, 401-411
  21. Makarova, K. S., L. Aravind, M. Y. Galperin, N. V. Grishin, R. L. Tatusov, Y. I. Wolf and E. V. Koonin. 1999. Comparative genomics of the Archaea (Eury-archaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res. 9, 608-28
  22. Manco, G., E. Giosue, S. D'Auria, P. Herman, G. Carrea and M. Rossi. 2000. Cloning, Overexpression, and Properties of a New Thermophilic and Ther-mostable Esterase with Sequence Similarity to Hormone-Sensitive Lipase Subfamily from the Archaeon Archaeoglobus fulgidus. Arch. Biochem. Biophy. 373, 182-192 https://doi.org/10.1006/abbi.1999.1497
  23. Mullis, K. B. 1990. Process for amplifying nucleic acid sequences. Science 6, 16-25 https://doi.org/10.1126/science.ns-6.126.16
  24. Mushegian, A 1999, The minimal genome concept, Curro Opin. Genet. 9, 709-714 https://doi.org/10.1016/S0959-437X(99)00023-4
  25. Mushegian, A and E. V. Koonin. 1996. A minimal gene set for cellular life derived by comparision of complete bacterial genomes, Proc. Natl. Acad. Sci. USA. 93, 10268-10273 https://doi.org/10.1073/pnas.93.19.10268
  26. Nierman, W., J. A. Eisen and C. M. Fraser. 2000. Microbial genome sequencing 2000: new insights into phylogeny, evolution and expression analysis. Res. Microbiol. 151, 79-84 https://doi.org/10.1016/S0923-2508(00)00125-X
  27. Pisano, M. A, M. K. Sommer and M. M. Lopez. 1989. Isolation of bioactive actinomycetes from marine sediment using rifampicin. Appl. Microbiol. Biotech. 31, 609-612 https://doi.org/10.1007/BF00270804
  28. Saitou, N. and M. Nei. 1987. The neighbor-joining method, a new method for reconstructing method for reconstructing phylogenetic trees, Mol. Bioi. Evol. 4, 406-425
  29. Sako, Y., N. Nomura, A Uchida, Y. Ishida, H. Morii, Y. Koga, T. Hoaki and T. Maruyama. 1996. Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C Int. J. Syst. Bacteriol. 46, 1070-1077 https://doi.org/10.1099/00207713-46-4-1070
  30. Segerer, A., T. A. Langworthy and K. O. Stetter. 1988. Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol. 10, 161-171 https://doi.org/10.1016/S0723-2020(88)80031-6
  31. Stetter, K. O. 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10, 172-173 https://doi.org/10.1016/S0723-2020(88)80032-8
  32. Tatusov, R. L., M. Y. Galperin, D. A. Natale and E. V. Koonin. 2000. The COG database, a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Res. 28, 33-36 https://doi.org/10.1093/nar/28.1.33
  33. Tatusov, R. L., E. V. Koonin and D. L. Lipman. 1997. A genomic perspective on protein families, Science 278, 631-637 https://doi.org/10.1126/science.278.5338.631
  34. Vielle, C. and G. J. Zeikus. 2001. Hyperthrmophilic enzymes: Sources, uses, and molecular mechanism for thermostability. Microbial. Molecul. Biol. Rev. 65, 1-43 https://doi.org/10.1128/MMBR.65.1.1-43.2001
  35. Vothknecht, U. C. and D. L. Tumbula. 1999. Archaea: from genomics to physiology and the origin of life. Trends Cell Biol. 9, 159-161 https://doi.org/10.1016/S0962-8924(99)01522-6
  36. Woese, C. R, O. Kandler and M. L. Wheelis. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya Proc. Natl. Acad. Sci. 87, 4576-4579 https://doi.org/10.1073/pnas.87.12.4576
  37. Wolf, Y. I., I. B. Rogozin, N. V. Grishin, R L. Tatusov and E. V. Koonin. 2001. Genome trees constructed using five different approaches suggest new major acterial clades. BMC Evolutionary BioI. 1, 8 https://doi.org/10.1186/1471-2148-1-8
  38. Zeikus, J. G., and R. S. Wolfe. 1972. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J. Bacterial. 109, 707-713

피인용 문헌

  1. Investigation of Conserved Regions in Lipase Genes vol.13, pp.5, 2003, https://doi.org/10.5352/JLS.2003.13.5.723
  2. Investigation of Conserved Genes in Eukaryotes Common to Prokaryotes vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.595