DOI QR코드

DOI QR Code

Incorporation of RAPD linkage Map Into RFLP Map in Glycine max (L, ) Merr

콩의 RAPD 연관지도를 RFLP 연관지도와 합병

  • Choi, In-Soo (Dept. of Plant Resources, Miryang National University) ;
  • Kim, Yong-Chul (Dept. of Plant Resources, Miryang National University)
  • Published : 2003.06.01

Abstract

The incorporation of RAPD markers into the previous classical and RFLP genetic linkage maps will facilitate the generation of a detailed genetic map by compensating for the lack of one type of marker in the region of interest. The objective of this paper was to present features we observed when we associated RAPD map from an intraspecific cross of a Glycine max$\times$G. max, 'Essex'$\times$PI 437654 with the public RFLP map developed from an interspecific cross of G. max$\times$G. soja. Among 27 linkage groups of RAPD map, eight linkage groups contained probe/enzyme combination RFLP markers, which allowed us the incorporation of RAPD markers into the public RFLP map. Map position rearrangement was observed. In incorporating L.G.C-3 into the public RFLP linkage group a1 and a2, both pSAC3 and pA136 region, and pA170/EcoRV and pB170/HindIII region were in opposite order, respectively. And, pk400 was localized 1.8 cM from pA96-1 and 8.4 cM from pB172 in the public RFLP map, but was localized 9.9 cM from i locus and 18.9 cM from pA85 in our study. A noticeable expansion of the map distances in the intraspecific cross of Essex and PI 437654 was also observed. Map distance between probes pA890 and pK493 in L.G.C-1 was 48.6 cM, but it was only 13.3 cM in the public RFLP map. The distances from the probe pB32-2 to pA670 and from pA670 to pA668 in L.G. C-2 were 50.9 cM and 31.7 cM, but they were 35.9 cM and 13.5 cM in the public RFLP map. The detection of duplicate loci from the same probe that were mapped on the same or/and different linkage group was another feature we observed.

RAPD 연관지도를 RFLP 연관지도와 합병을 하는 것은 각각의 유전 marker들의 단점을 서로 보완하여 세밀화된 유전자 지도작성을 용이하게 할 수 있다. 본 연구는 Essex와 PI 437654의 $F_2$$F_3$ 후대계통들을 재료로 하여 작성된 RAPD 연관지도를 콩의 RFLP 연관지도와 합병을 함에 있어서 나타난 몇가지 특징들을 기술하고자 함을 목적으로 하는 바 그 특징들은 아래와 같이 요약된다. 1. RAPD 연관지도상에서의 RFLP probe들의 위치가 RFLP 연관지도상에서의 위치와 부분적으로 변동된 현상이 나타났다. RAPD 연관그룹 L.G.C-3을 RFLP 연관그룹 a1 및 a2와 합병하는 과정에서 pSAC3와 pA136, 그리고 pA170/EcoRV와 pB170/HindIII이 서로 반대방향으로 위치하였다. pK400은 RFLP 연관지도상에서는 pA96-1과 pB172의 사이에 위치한 반면 RAPD 연관지도상에서는 i locus와 pA85 사이에 위치하였다. 2. RAPD 연관지도상에서의 두 marker들간의 간격이 RFLP 연관지도상에서의 간격보다 멀어진 현상이 두드러지게 나타났다. pA890과 pK493간의 간격은 RAPD 연관그룹 L.G.C-1에서는 48.6 cM이었던 반면 RFLP 연관 그룹상에서는 단지 13.3 cM으로 나타났다. 또한 pB32-2와 pA670, pA670과 pA668사이의 간격은 RAPD 연관그룹 L.G.C-2에서는 50.9 cM과 31.7 cM이었던 반면, RFLP 연관지도상에서의 간격은 각각 35.9 cM과 13.5 cM으로 나타났다. 3. 하나의 RFLP probe로부터 두개 이상의 다형화 현상을 나타낸 marker들이 동일한 연관그룹이나 다른 연관그룹에 위치하는 현상이 나타났다. 제한효소 HindIII로 절단된 probe pK418은 세개의 marker를 나타내었는데, 그 중 하나는 L.G.C-20에 위치하였으며, 다른 두개는 L.G.C-4에 위치하였다. 위에 나타난 특징들은 RAPD 연관지도는 intraspecific cross의 후대계통들을 재료로 하여 작성된 반면 RFLP 연관지도는 interspecific cross의 후대계통들을 재료로 하여 작성된 결과에선 비롯된 차이점 때문인 것으로 추측된다.

Keywords

References

  1. Andersen, W. R. and D. J. Fairbanks. 1990. Molecular markers: Important tools for plant genetic resource characterization. Diversity 6, 51-53
  2. Apuya, N., B. L. Frazier, P. Keirn, E. J. Roth and K. G. Lark. 1988. Restriction length polymorphisms as genetic markers in soybean, Glycine max (L.) Merr. Theor. Appl. Genet. 75, 889-901
  3. Beckman, J. S. and M. Soller. 1983. Restriction fragment length polymorphisms in genetic improve-ment: methodologies, mapping and costs. Theor. Appl. Genet. 67, 35-43 https://doi.org/10.1007/BF00303919
  4. Burr, B. S., V. Evolva and F. A. Burr. 1983. The application of RFLP to plant breeding. In: J. K. Sketlow and A. Hollander (eds.) Genetic engineering: Principles and Methods. pp. 45-59. Plenum, New York
  5. Choi, I. S. and H. T. Skorupska. 1995. RAPD marker selection using DNA composite of cultivars for dif-ferential response to soybean cyst nematode races 3, 5, and 14. Soybean Genetics Newsletter 250, 245-250
  6. Choi, I. S., Y.C. Kim and H. T. Skorupska. 1997. Random Amplified Polymorphic DNA map for intraspecific cross of Essex$\times$PI 437654 in Glycine max(L.) Merr. Korean J. Breeding 29, 270-281
  7. Diers, B. W., P. Keim, W. R. Fehr and R. C. Shoe-maker. 1992. RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet. 83, 608-612
  8. Feinberg, A. P. and B. Vogelstein. 1983. A technique for radiolabelling DNA restriction endonuclease frag-ments to high specific activity. Anal. Biochem. 137, 266-267 https://doi.org/10.1016/0003-2697(84)90381-6
  9. Goldberg, R. B. 1978. DNA sequence organization in the soybean plant. Biochemical Genetics 16, 45-68 https://doi.org/10.1007/BF00484384
  10. Gurley, W. B., A. G. Hepburn and J. L. Key. 1979. Sequence organization of soybean genome. Biochem. Biophys. Acta 561, 167-183 https://doi.org/10.1016/0005-2787(79)90500-8
  11. Helentjaris, T., D. Weber and S. Wright. 1988. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118, 353-363
  12. Keirn, P., B. W. Diers, T. C. Olson and R. C. Shoe-maker. 1990. RFLP mapping in soybean: Association between marker loci and variation in quantitative trait. Genetics 126, 735-742
  13. Keirn, P., B. , T. Olson and R. C. Shoemaker. 1988a. A rapid protocol for isolating soybean DNA. Soy. Genet. Newsl. 15, 151-152
  14. Keim, P., B. and R. C. Shoemaker. 1988b. Construction of a random recombinant DNA library that is primarily single copy sequence. Soy. Genet. Newsl. 15, 147-148
  15. Lander, E., P. Green, J. Abrahamson, A. Barlow, M. Daley, S. Lincoln and L. Newburg. 1987. MAPMAKER: An Interactive Computer Package for Constructing Primary Genetic Linkage Maps of Experimental and Natural Populations. Genomics 1, 174-181 https://doi.org/10.1016/0888-7543(87)90010-3
  16. Lark, K. G., J. M. Weisemann, B. F. Mathews, R. Palmer, K. Chase and T. Macalma. 1993. A genetic map of soybean [Glycine max (L.)] using an intraspecific cross of two cultivars: 'Minosoy' and 'Nair1'. Theor. Appl. Genet. 86, 901-906
  17. Lincoln, S., M. Daly and E. Lander. 1992. Constructing Genetic Maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report. 3rd edition
  18. Nelson, R. L., Amdor, P. J., Ofr, J. H. and Cavins, J. F. 1988. Evaluation of the USDA soybean germplasm collection: maturity groups 000 to IV (PI 427.136 to PI 445.845). USDA-ARS Tech. Bull. 1726
  19. Palmer, R. G. and B. R. Hedges. 1993. Linkage map of soybean (Glycine max L. Merr.). pp. 6.139-6.148. In S. J. O'Brien (ed.) Genetic Maps: Locus maps of complex genomes. Cold Spring Harbor Laboratory Press, New York
  20. Rogers, S. O. and A. G. Bendich. 1985. Extraction of DNA from milligram amount of fresh, herbarium and mummified plant tissue. Plant Mol. BioI. 5, 69-76 https://doi.org/10.1007/BF00020088
  21. SAS. 1990. SAS/STAT User's Guide, version 6.0. 3rd ed. SAS Institute Inc. SAS Campus Drive, Cary, NC
  22. Shoemaker, R. C. and T. C. Olson. 1993. Molecular linkage map of soybean [Glycine max (L.) Merr.]. In: Genetic maps, 6th ed. S. J. O'Brien (ed.) New York: Cold Spring Habor Laboratory Press. 6.131-6.138
  23. Shoemaker, R. C., T. C. Olson, K. M. Polzin, L. L. Lorenzen and J. E. Specht. 1996. Molecular genetic mapping of soybean. In:Soybean: Genetics, Molecular Biology and Biotechnology. (eds.) D. P. S. Verma and R. C. Shoemaker. CAB INTERNATIONAL pp. 37-56
  24. Shoemaker, R. C. and J. E. Specht. 1995. Integration of the Soybean Molecular and Classical Genetic Linkage Groups. Crop Sci. 35, 436-446 https://doi.org/10.2135/cropsci1995.0011183X003500020027x
  25. Skorupska, H. T., A. Warner and I. S. Choi. 1995. Identification of PCR-generated DNA variation in transmission analysis with PI 437654. Soybean Genetics Newsletter 250, 240-244
  26. Smith and H. M. Camper. 1973. Registration of Essex. Crop Sci. 13, 495
  27. Southern, E. 1975. Detection of specific sequences among DNA fragments separated by gel electro-phoresis. J. Mol. Biol. 98, 503-517 https://doi.org/10.1016/S0022-2836(75)80083-0
  28. Suiter, K. A., J. F. Wendel and J. S. Case. 1983. Linkage-l: A Pascal computer program for the detection and analysis of genetic linkage. J. Hered. 74, 203-204
  29. Tingey, S. V., J. A. Rafalski and J. G. K. Williams. 1992. Genetic analysis with RAPD markers. In: Ap-plications of RAPD Technology to Plant Breeding. Joint Plant Breeding Symposia Series. Nov. 1, 1992, Minneapolis, MN. pp. 3-8
  30. Tingey, S. V., J. A. Rafalski and J. G. K. Williams, and S. Sebastian. 1991. Soybean genome analysis: DNA polymorphisms are identified by oligonucleotide primers of arbitrary sequence. In: Plant Molecular Biology 2. (eds.) R. G. Herrmann and B. Larkins. Academic Press, New York. pp. 263-268
  31. Wendel, J. F., C. W. Stuber, M. M. Goodman and J. B. Beckett. 1989. Duplicated plastid and triplicated cytosolic isozymes of triosephosphate isomerase in maize (Zea mays L.). J. Hered. 80, 218-228
  32. Williams, J. G. K., R. S. Reiter, R. M. Young and P. S. Scolnik. 1993. Genetic mapping of mutations using phenotypic pools and mapped RAPD markers. Nucleic Acids. Research 21, 2697-2702 https://doi.org/10.1093/nar/21.11.2697