Quorum Sensing of Rhodobacter sphaeroides Negatively Regulates Cellular Poly-$\beta$-Hydroxybutyrate Content Under Aerobic Growth Conditions

  • Lee, Jeong-K. (Department of Life Science, Sogang University) ;
  • Kho, Dhong-Hyo (Department of Life Science, Sogang University) ;
  • Jang, Ji-Hee (Department of Life Science, Sogang University) ;
  • Kim, Hye-Sun (Department of Life Science, Sogang University) ;
  • Kim, Kun-Soo (Department of Life Science, Sogang University)
  • Published : 2003.06.01

Abstract

The community escape response of Rhodobacter sphaeroides is exerted through the action of CerR and CerI, which code for a LuxR-type regulatory protein and acylhomoserine lactone synthase, respectively. Deletion of chromosomal DNA including cerR and cerI (mutant RI) or insertional interruption of cert (mutant AP3) resulted in two-fold increase in the cellular poly-${\beta}$-hydroxybutyrate (PHB) content In comparison with the wild-type under aerobic growth conditions. The PHB synthase (PhbC) activities of the cer mutants were doubled, and the enzyme expression was regulated at the level of phbC transcription. Thus, CerR, possibly in response to autoinducer (AI), appears to modulate the PHB content of aerobically grown cells by downregulating phbC transcription.

Keywords

References

  1. Microbiol. Rev. v.54 Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates Anderson,J.A.;E.A.Dawes
  2. J. Bacteriol. v.170 In vivo analysis of puf operon expression in Rhodobacter sphaeroides after deletion of a putative intercistronic transcription terminator DeHoff,B.S.;J.K.lee;T.J.Donohue;R.I.Gumport;S.Kaplan
  3. J. Bacteriol. v.176 A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite Fuqua,W.C.;S.C.Winans
  4. J. Bacteriol. v.176 Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators Fuqua,W.C.;S.C.Winans;E.P.Greenberg
  5. Biotechnol. Lett. v.15 Characterization of the polyhydroxyalkanoate synthase gene locus of Rhodobacter sphaeroides Hustede,E.;A.Steinbuhel
  6. J. Microbiol. Biotechnol. v.11 Expression analysis of β-ketothiolase and acetoacetyl-CoA reductase of Rhodobacter sphaeroides Kho,D.H.;C.Y.Jeong:J.K.Lee
  7. J. Microbiol. Biotechnol. v.11 Expression analysis of phbC coding for poly-3-hydroxybutyrate (PHB) synthase of Rhodobacter sphaeroides Kho,D.H.;J.M.Yang;K.S.Kim;J.K.Lee
  8. Microbiol. Rev. v.52 Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides Kiley,P.J.;S.Kaplan
  9. J. Bacteriol. v.82 Assay of poly-3-hydroxybutyric acid Law,J.H.;R.A.Slepecky
  10. Arch. Microbiol. v.155 Formation of poly (3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria Liebergesell,M.;E.Hustede;A.Timm;A.Steinbuhel;R.C.Fuller;R.W.Lenz https://doi.org/10.1007/BF00244955
  11. J. Biol. Chem. v.253 Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodobacter sphaeroides Lueking,D.R.;R.T.Fralely;S.Kaplan
  12. J. Bacteriol. v.176 Control of poly-β-hydroxybutyrate synthase mediated by acetyl phosphate in Cyanobacteria Miyake,M.;K.Kataok;M.Shirai;Y.Asada
  13. Mol. Microbiol. v.19 The role of the lux autoinducer in regulating luminescence in Vibrio harveyi; control of luxR expression Miyamoto,C.M.;J.Chatterjee;E.Swartzman;R.Szittner;E.A.Meighen https://doi.org/10.1046/j.1365-2958.1996.417948.x
  14. Biochim. Biophys. Acta v.1384 The LuxR regulator protein controls synthesis of polyhydroxybutyrate in Vibrio harveyi Miyamoto,C.M.;S.Weiqun;E.A.Meighen https://doi.org/10.1016/S0167-4838(98)00028-4
  15. Proc. Natl. Acad. Sci. USA v.91 Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes Pearson,J.P.;K.M.Gray;L.Passador;K.D.Tucker;A.Eberhard;B.H.Iglewski;E.P.Greenberg https://doi.org/10.1073/pnas.91.1.197
  16. J. Biol. Chem. v.264 Poly-β-hydroxybutyrate biosyrthesis in Alcaligenes eutrophus H16 Peoples,O.P.;A.J.Sinskey
  17. J. Bacteriol. v.179 A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides Puskas,A.;E.P.Greenberg;S.Kaplan;A.L.Schaefer
  18. Gene v.56 A series of Tn5 variants with various drug-resistance markers and suicide vector for transposon mutagenesis Sasakawa,C.;M.Yoshikawa https://doi.org/10.1016/0378-1119(87)90145-4
  19. Bio/Technology v.1 A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria Simon,R.;V.Priefer;A.Puhler https://doi.org/10.1038/nbt1183-784