Overexpression of Thermoalkalophilic Lipase from Bacillus stearothermophilus L1 in Saccharomyces cerevisiae

  • Ahn, Jung-Oh (Department of Chemical Engineering, Yonsei University) ;
  • Jang, Hyung-Wook (Acebiotech Corporation, Chungwon) ;
  • Lee, Hong-Weon (Bioventure Center, Bio-pilot Plant, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Eui-Sung (Microbial Functions Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Haam, Seung-Joo (Department of Chemical Engineering, Yonsei University) ;
  • Oh, Tae-Kwang (Microbial Genomics Applications Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jung, Joon-Ki (Bioventure Center, Bio-pilot Plant, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2003.06.01

Abstract

An expression vector system was developed for the secretory production of recombinant Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae. The mature L1 lipase gene was fused to ${\alpha}-amylase$ signal sequence from Aspergillus oryzae for the effective secretion into the culture broth and the expression was controlled under GAL10 (the gene coding UDP-galactose epimerase of S. cerevisiae) promoter. S. cerevisiae harboring the resulting plasmid successfully secreted L1 lipase into the culture broth. To examine an optimum condition for L1 lipase expression in the fed-batch culture, L1 lipase expression was induced at three different growth phases (early, mid, and late-exponential growth phases). Maximum product on of L1 lipase (1,254,000 U/l, corresponding to 0.65/1) was found when the culture was induced at an early growth phase. Secreted recombinant L1 lipase was purified only through CM-Sepharose chromatography, and the purified enzyme showed 1,963 U/mg of specific activity and thermoalkalophilic properties similar to those reported for the enzyme expressed in Escherichia coli.

Keywords

References

  1. J. Microbiol. Biotechnol. v.5 Effect of galactose feeding strategy on heterologous human lipocortin-Ⅰproduction in the fed-batch culture of Saccharomyces cerevisiae controlled by the GAL10 promoter Chung,B.H.;B.M.Kim;S.K.Rhee;Y.H.Park;S.W.Nam
  2. J. Gen. Microbiol. v.44 The Crabtree effect: A regulatory system in yeast De Dekin, R.H.
  3. Appl. Biochem. Biotechnol. v.90 GpdA-promoter-controlled production of glucose oxidase by recombinant Aspergillus niger nonglucose carbon sources El-enshasy, H.;K.Hellmuth;U.Rinas https://doi.org/10.1385/ABAB:90:1:57
  4. Appl. Microbiol. Biotechnol. v.43 Optivization of glucose oxidase production by Aspergillus niger using genetic- and process-engineering techniques Hellmuth,K.;S.Pluschkell;J.K.Jung;E.Ruttkowski;U.Rinos https://doi.org/10.1007/BF00166912
  5. Appl. Environ. Microbiol. v.65 High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification Jeong,K.J.;S.Y.Lee
  6. Biologic. Crystal. v.D57 Crystallization and preliminary X-ray analysis of thermoalkalophilic lipase from Bacillus stearothermophilus L1 Jeong,S.T.;H.K.Kim;S.J.Kim;J.G.Pan;T.K.Oh;S.G.Ryu
  7. Microbial Rev. v.51 A model fungal gene regulatory mechanism: The GAL genes of Saccharomyces cerevisiae Johnston,M
  8. J. Microbiol. Biotechnol. v.12 Biochemical properties and substrate specificity of lipase from Staphylococcus aureus B56 Jung,W.H.;H.K.Kim;C.Y.Lee;T.K.Oh
  9. Bioproc. Eng. v.23 Effect of continuous feeding of galactose on the production of recombinant glucose oxidase using Saccharomyces cerevisiae Kapat,A.;J.K.Jung;Y.H.Park https://doi.org/10.1007/s004499900117
  10. Biosci. Biotech. Biochem. v.62 Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1 Kim,H.K.;S.Y.Park;J.K.Lee;T.K.Oh https://doi.org/10.1271/bbb.62.66
  11. J. Microbiol. Biotechnol. v.12 Display of Bacillus macerans cyclodextrin glucanotransferase on cell surface of Saccharomyces cerevisiae Kim,K.Y.;M.D.Kim;S.H.Nam;J.H.Seo
  12. Biosci. Biotech. Biochem. v.64 Thermostable lipase of Bacillus stearothermophilus: High-level production, purification and calcium-dependent thermo-stability Kim,M.H.;H.K.Kim;J.K.Lee;T.K.Oh https://doi.org/10.1271/bbb.64.280
  13. Biotechnol. Lett. v.24 Heterologous expression and secretion of sweet potato peroxidase isoenzyme A1 in recombinant Saccharomyces cerevisiae Kim,T.H.;J.K.Jung;S.S.Kwak;S.W.Nam;M.J.Chun;Y.H.Park https://doi.org/10.1023/A:1014053807643
  14. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Laemmli,U.K. https://doi.org/10.1038/227680a0
  15. Science v.25 Order events in the yeast secretory form yeast Novick,P.;S.Ferro;R.Scheckman
  16. Yeast v.8 Foreign gene expression in yeast: a review Romanos,M.A.;C.A.Scorer;J.J.Clare https://doi.org/10.1002/yea.320080602
  17. Appl. Microbiol. Biotechnol. v.49 High-level expression of the thermoalkalophilic lipase from Bacillus thermocatenulatus in Escherichia coil Rua,M.L.;H.Atomi;C. Schmidt-Dannert;R.D.Schmid https://doi.org/10.1007/s002530051190
  18. Biol. Med. Chem. v.7 Recombinant microbial lipase for biotechnological applications Schmidt-Dannert, C. https://doi.org/10.1016/S0968-0896(99)00141-8
  19. Biochim. Biophys. Acta v.1301 Thermoalkalophilic lipase of Bacillus thermocatenulatus 1. Molecular cloning, nucleotide sequence, purification and some properties Schmidt-Dannert,C.;M.L.Rua;H.Atomi;R.D.Schmid https://doi.org/10.1016/0005-2760(96)00027-6