Prebiotic Properties of Levan in Rats

  • Jang, Ki-Hyo (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Kang, Soon-Ah (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Cho, Yun-Hi (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Kim, Yun-Young (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Lee, Yun-Jung (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Hong, Kyung-Hee (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Seong, Kyung-Hwa (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Kim, So-Hye (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Kim, Chul-Ho (RealBioTech Co., Ltd., Biotechnology Research Division, KRIBB) ;
  • Rhee, Sang-Ki (Biotechnology Research Division, KRIBB) ;
  • Ha, Sang-Do (Department of Food Science and Technology, Chung-Ang Univ.) ;
  • Choue, Ryo-Won (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
  • Published : 2003.06.01

Abstract

Generally, two different types of fructose polymer are found in nature. One is inulin, whose fructosyl residues are linked mainly by a ${\beta}-(2,1)-linkage$, while the other is high-molecular-weight levan, whose fructosyl residues are linked mainly by a ${\beta}-(2,6)-linkage$. In contrast to the extensive studies on the prebiotic properties of inulin, there has been no report on the effect of levan on the large bowel microflora in viva. Therefore, to examine whether dietary levan can be used as a prebiotic, Sprague-Dawley male rats were fed one of two diets for 3 weeks: 1) basal diet plus sucrose; 2) basal diet plus 10% (wt/wt) levan. The cecal bowel mass, cecal and colon short-chain fatty acids (SCFAs), pH, and microflora were then compared. The intake of the levan-containing diet significantly increased the total cecal weight and wall weight. The analyses of the SCFAs in the cecal and colonic contents revealed that levan was converted into acetate, butyrate, and lactate, which resulted in acidic conditions. The intake of levan also significantly increased the total number of microorganisms by 5-fold and lactic acid-producing bacteria (LAB) 30-fold in the feces. Accordingly, the current work shows that levan can be used as a prebiotic for stimulating the growth of LAB in an animal model.

Keywords

References

  1. Syst. Appl. Microbiol v.24 In vitro study of probiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis Bello, F.D.;J.Walter;C.Hertel;W.P.Hammes https://doi.org/10.1078/0723-2020-00033
  2. J. Nutr. v.127 Selected indigestible oliosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats Campbell,J.M.;G.C.Fahey Jr;B.W.Wolf
  3. Am. J. Clin. Nutr. v.69 Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut Collins, M.D.;G.R.Gibson
  4. J. Nutr. v.125 Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics Gibson,G.R.;M.B.Roberfroid
  5. Adv. Appl. Microbiol v.35 Microbial levan Han,Y.W. https://doi.org/10.1016/S0065-2164(08)70244-2
  6. Science and Technology of Fructans The origin, distribution, and evolutionary significance of fructans Hendry,G.A.F.;R.K.Wallace;Suzuki,M.(ed.);N.J.Chatterton(ed.)
  7. Bifidobact. Microflora v.5 Effect of fructooligosaccharides on intestinal flora and human health Hidaka,H.;T.Eida;T.Takizawa;T.Tokunaga;Y.Tashiro
  8. Bifidobact. Microflora v.10 Proliferation of bifidobacteria by oligosaccharides and their useful effect on human health Hidaka,H.;Y.Tashiro;T.Eida
  9. J. Nutr. v.124 Galaccsylsucrose and xylosylfructoside alter digestive tract size and concentration of cecal organic acids in rats fed diets containing cholesteroll and cholic acid Hoshi,S.;T.Sakata;H.Hashimoto;S.Kimura
  10. J. Microbiol. Biotechnol v.12 Molecular characterization of levansucrase gene from Pseudomonas aurantiaca S-4830 and its expression in Escherichia coli Jang,E.K.;K.H.Jang;I.Koh;I.H.Kim;S.A.Kang;C.H.Kim;S.D.Ha;S.K.Rhee
  11. Biotechnol. Lett. v.23 Comparison of characteristics of levan produced by different preparations of levansucrase from zymomonas mobilis Jang,K.H.;K.B.Song;C.H.Kim;B.H.Chung;S.A.Kang;U.H.Chun;R.W.Choue;S.K.Rhee https://doi.org/10.1023/A:1005641220946
  12. Biotechnol. Bioeng. v.38 Continuous culture system for production of biopolymer levan using Erwinia herbicola Keith,K.;B.Wiley;D.Ball;S.Arcidiacono;D.Zorfass;J.Mayer;D.Kaplan https://doi.org/10.1002/bit.260380515
  13. J. Microbiol. Biotechnol v.11 Cloning and sequence analysis of a levansucrase gene from Rahnella aquatilis ATCC15552 Kim,H.J.;J.Y.Yang;H.G.Lee;J.H.Cha
  14. Br. J. Nutr. v.81 Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXⅡ AIRⅡ-CT9-1095) Loo,J.V.;J.Cummings;N.Delzenne;H.Englyst;A.Frank;M.Hopkins;N.Kok;G.Macfalane;D.Newton;M.Quigley;M.Roberfroid;T. van Vliet;E. van den Heuvel
  15. FEMS Microbiol. Lett. v.182 Metabolization of β-(2,6)-linked fructose-oligosaccharides by different bifidobacteria Marx,S.P.;S.Winkler;W.Hartmeier
  16. A color Atlas of Anaerobic Bacteria Misuoka, T.A.
  17. Int. Dairy J. v.11 Homopolysaccharides from lactic acid bacteria Monsan,P;S.Bozonnet;C.Albenne;G.Joucla https://doi.org/10.1016/S0958-6946(01)00113-3
  18. New Phytol. v.136 Purification and substrate specificity of an extracellular fructanhydrolase from Lactobacillus paracasei ssp. paracasei P4134 Muller,M.;W.Seyfarth
  19. Biosci. Biotech. Biochem v.56 Characterization of leansucrase from Rahnella aquatilis JCM-1638 Ohtsuka, K.;S.Hino;T.Fukushima;O.Ozawa;T.Kanematsu;T.Uchida https://doi.org/10.1271/bbb.56.1373
  20. Nutr. Res. v.18 Comparison of the nutritional effects of fructooligosaccharides of different sugar chain length in rats Ohta,A.;M.Ohtsuki;S.Baba;M.Hirayama;T.Adachi https://doi.org/10.1016/S0271-5317(97)00205-4
  21. J. Nutr. Sci. Vitaminol v.42 Effects of fructooligosaccharides on the absorption of iron, calcium and magnesium in iron-deficient anemic rats Ohta,A.;M.Ohtsuki;S.Baba;T.Takizawa;T.Adachi;S.Kimura
  22. Biopolymers v.6 Levan Rhee,S.K.;K.B.Song;C.H.Kim;B.S.Park;E.K.Jang;K.H.Jang;Alexander,S.(ed.);E.Vandamme(ed.);S.De.Baets(ed.)
  23. Nutr. Rev. v.54 Functional effects of food components and the gastrointestinal system; Chicory fructooligosaccharides Roberfroid, M.B. https://doi.org/10.1111/j.1753-4887.1996.tb03817.x
  24. J. Nutr. v.129 Caloric value of inulin and oligofructose Roberfroid,M.B.
  25. J. Nutr. v.128 The bifidogenic nature of chicory inulin and its hydrolysis products Roberfroid,M.B.;J.A.E.Van Loo;G.R.Gibson
  26. Ann. N. Y. Acad. Sci. v.799 Production of leavan, a fructose polymer, using an overexpressed recombinant levansucrase Song,K.B.;H.Belghith;S.K.Rhee https://doi.org/10.1111/j.1749-6632.1996.tb33264.x
  27. Physiol. Rev. v.81 Short-chain fatty acids and human colonic function: roles of resistant starcha and nonstarch polysaccharides Topping,D;P.M.Clifton
  28. J.Nutr.Biochem v.10 In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats Yamamoto,Y.;Y.Takahashi;M.Kawano;M.Iizuka;T.Matsumoto;S.Saeki;H.Yamaguchi https://doi.org/10.1016/S0955-2863(98)00077-1
  29. Microb. Ecol. Health Dis. v.7 Influence of dietary neosugar on selected bacterial groups of the human faecal microbiota Williams,C.H.;S.A.Witherly;R.K.Buddington https://doi.org/10.3109/08910609409141577