미세조류 유래 고부가 유용물질

High-Value Materials from Microalgae

  • 발행 : 2003.06.01

초록

미세포류는 다양한 서식환경, 분류군, 종조성 등의 특징을 갖는 미생물군이며 , 이들은 각종 유용물질을 생산하는 것으로 알려지고 있다. 따라서 지금까지 유용물질 생산을 위하여 집중적으로 연구되었던 세균, 곰팡이 등과 함께 미래의 유용한 물질생산의 보고로 간주되고 있다. 미세조류 배양의 가장 큰 장점은 대부분의 작물생산에 적합하지 않는 높은 염도, 강한 알카리 등의 극한 환경에서도 성장하는 조류가 있다는 점이다. 최근 유용 미생물 탐색, 미생물 배양, 유용물질 탐색기술 등의 기반 기술이 크게 발달하면서 미세조류 배양 및 물질생산 비용은 점차 저렴해지고 있다. 또한 최근 급격히 발달된 생명공학기술을 이용한 유전공학적 조류주 개량 등으로 유용물질 생산 효율도 크게 증가시킬 수 있게 되었다. 한편 전 세계적으로 지구환경문제가 중요 쟁점으로 등장하였으며, 동시에 생물다양성협약 등 생물자원의 보존 및 확보가 무엇보다도 중요한 시점이라 할 수 있다. 미세조류의 대량배양 시 배지로서 축산폐수를 이용한다면 유용물질의 생산과 동시에 폐수의 고차처리, 대기 중 이산화탄소의 고정화 등 당면한 환경문제를 해결할 수 있는 환경친화적 기술로 평가되고 있다. 따라서 미세조류의 대량배양을 통하여 biomass로부터 건강보조식품, 천연색소, 의약용 물질 등의 고부가 유용물질을 생산하여 경제적 가치를 창출할 수 있다. 또한 미세조류의 대량배양은 부수적으로 생물학적 이산화탄소 고정화를 통한 대기 중 농도감소 등의 지구환경문제의 해결에도 기여할 수 있다. 즉, microalgal biotechnolog는 생물산업의 활성화와 함께 횐경산업의 발전을 도모할 수 있는 유망한 미래 산업으로서 앞으로 큰 발전이 기대된다. 수 있음을 보인다.옥천비변성대의 고생대 지층에서도 보고된 바 있기 때문에 옥천대에 광역적으로 일어난 것으로 생각된다.didn′t have purchase intention of apparel on Internet shopping malls were summarized and labeled as: difficulty of decision making due to virtual shopping environment, insufficiency of diverse apparels, users′ unease handling, risk of incredible apparel quality, unfamiliarity of Internet shopping and risks of unsecurity. Difficulty of decision making due to virtual shopping environment was determined as the most important factor of reasons that respondents didn′t have purchase intention of apparels in website.previous experience" in both cases. The rural housewives bought clothes when they had any "event" and urban housewives bought them when they had "extra money or sale".ng about the real environmental damage of the vehicles. In the paper we describe "how should the

Microalgae are a diverse group of photosynthetic organisms and abundant in every ecosystem in the biosphere. They are common in aqueous environments including marine, brackish and fresh waters and in some habitats that lack eukaryotic life such as some hot springs and highly alkaline lakes. Microalgal biotechnology that is focused on the microalgae-based production of a variety of useful materials such as pharmaceutical comfounds, health foods, natural pigments, and biofuels is considered as an important discipline with the development of biotechnology. In addition, the mass cultivation of microalgae can also contribute to improving the environmental quality by reducing the concentration of $CO_2$ which is one of major gases lead to global warming. Consequently, it seems that the microalgae can be used as an efficient, renewable, environmentally friendly source of high-value biomaterials such as chemicals, pigments, energy, etc. and the microalgal biotechnology will most likely represent a larger portion of modern biotechnology.

키워드

참고문헌

  1. World, patent 9837874 Oral preparation for the porphylactic and therapeutic treatment of Helico-bacter sp. infection Alejung,P.A.R.;T.Wadstroem
  2. J. Phycol v.35 Commercial developments in microalgal biotechnology Apt,K.E.;P.W.Behrens
  3. J. Aquaculture v.8 Comparison of dietary values in seven species of marine diatoms Bae,J.H.;S.B.Hur
  4. Microalgae: Biotechnology and Microbiology Becker,E.W.
  5. US, patent 5709855 Compositions of Spirulina algae and omega fatty acids for treatment of inflammation and pain Bockow,B.
  6. Nat. Biotechnol v.16 Nutraceuticals: poised for a healthy slice of the healthcare market? Brewer,V.
  7. Anal. Biochem. v.290 Recombinant phycobiliproteins Cai,Y.A.;J.T.Murphy;G.J.Wedemayer;A.N.Glazer
  8. J. Appl. Bacteriol. v.72 Cyanobacteria secondary metabolites-the cyanotoxins Carmichael,W.W
  9. Japan, patent 9040523 Fibroblast proliferation promoter containing water extract from Chlorella Chikamatsu,Y.;K.Ito;M.Hori;H.Ando
  10. Korean J. Biotechnol. Bioeng. v.12 Optimization of plate bioreactor system for mass production of microalgae Cho,M.G.;H.S.Yoo;J.G.Koo
  11. Korean J. Biotechnol. Bioeng v.14 High cell density cultures of micro-algal Dunaliella baradawil Chung,W.J.;M.Wang;S.Choi;J.Kim;B.Jeong
  12. Microbiol. Rev. v.47 Spirulina, the edible microorganism Ciferri,O.
  13. Annu. Rev. Microbiol. v.39 The biochemistry and industrial potential of Spirulina Ciferri,O.;O.Tiboni
  14. Wat. Sci. Tech. v.32 Cyanobacterial toxins: occurrence, properties and biological significance Codd,G.A.
  15. US, patent 6475990 Drugs, foods or drinks with the use of algae-derived physiologically active substances Enoki,T.;H.Sagawa;T.Tominaga;Eiji,N.;Nobuto,K.;T.Sakai;F.G.Yu;K.Ikai;I.Kato
  16. German, patent 4219360 Lipid(s) with high content of long chain highly unsaturated fatty acids Erbe,J.G.Kohn;G.Sawatzi;F.Schweikhardt
  17. J. Appl. Phycol v.10 Chinese studies on the edible blue-green alga Nostoc flagelliforme: a review Gao,K.
  18. Methods Enzymol v.167 Phycobilliproteins Glazer,A.N.
  19. Multi-carotenoid product Gorenbein,D.I.A.;Siddiqui,E.;R.Ceja;C.M.Horvath
  20. US, patent 6309677 Multi-carotenoid product Gorenbein;D.I.A.Siddiqui;E.R.Ceja;C.M.Horvath
  21. World, patent 9739106 Methods and tools for transformation of eukaryotic algae Grossman,A.R.;K.Apt;D.Kyle;F.C.T.Allnutt
  22. China, patent 1084848 Harvesting Dunaliella and extracting beta-carotene Guanguha,Y.;Q.Huylan;Y.Sheng
  23. US, patent 5910254 Method for dewatering microalgae with a bubble column Guelcher,S.A.;J.S.Kanel
  24. Handbook of Phycological Methods Methods for microscopic algae Hoshaw,R.W.;J.R.Rosowski;J.R.Stein(ed.)
  25. J. Aquaculture v.1 Chlorella cultivation for mass culture of rotifer, Brachionus plicatilis I.;Selection of suitable Chlorella species Hur,S.;B.;H.J.Kim
  26. J. Aquaculture v.2 Selection of suitable phyto-food organisms for the rotifer, Brachinus plicatilis cultivation in high and low water temperature seasons Hur,S.B.;C.K.Lee;E.H.Lee
  27. J. Immunol. Methods v.121 A novel and inexpensive source of allophycocyanin for multicolor flow cytometry Jung,T.;M.Dailey
  28. Adsorptive bubble separation methods and systems for dewatering suspensions of microalgae and extracting components therefrom Kanel,J.S.;S.A.Guelcher
  29. Crit. Rev. Food Sci. Nutr v.30 Microalgae as food and supplement Kay,R.A.
  30. J. Phycol v.17 Establishment of axonic cultures of Anabaena flos-aquae and Aphanothece nidulans (Cyanophyta) by Iysozyme treatment Kim,J.S.;Y.H.Park;B.D.Yoon;H.M.Oh
  31. Kor. J. Appl. Microbiol Biotechnol v.17 The effects of light intensity in Producing EPA from marine green algae Lee,H.Y.;J.K.Kang
  32. Lett. Appl. Microbiol. v.27 Effects of harvesting method and growth stage on the flocculation of the green alga Botryococ-cus braunii Lee,S.J.;S.B.Kim;J.E.Kim;G.S.Kwon;B.D.Yoon;H.M.Oh
  33. Philippine Naturalist v.71 Nostoc commune Vauch. a nitrogen-fixing blue-green alga, as source of food in the Philippines Martinez,M.R.
  34. Separation of colouring matter from Spirulina Mihama,H.
  35. Japan, patent 6271783 Separation of colouring matter from Spirulina Mihama,H.
  36. J, Indust. Microbiol v.16 Cyclic peptides and depsipeptides from cyanobacteria: a review Moore,R.E.
  37. Biotech. Adv. v.6 The potential of microalgal biotechnology: a review of production and uses of microalgae Noue,J.D.L.;N.De.Pauw
  38. Korean J. Phycol v.5 Preparation of unialgal cultures from natural waters by a micropipette technique Oh,H.M.;G.Y.Rhee
  39. Appl. Environ. Microbiol v.66 Microcystin production of Microcystis aeruginosa in P-limited chemostat Oh,H.M.;S.J.Lee;M.H.Jang;B.D.Yoon
  40. Korean J. Biotechnol. Bioeng v.12 Production of EPA and DHA from marine microalga Isochrysis galbana Parke Oh,Y.K.;Y.J.Kim;S.Park.
  41. Kor. J. Appl. Microbiol Biotechnol v.21 Kinetics of producing β-carotene from Dunaliella salina by light limited turbidostat cultivation Park,YS.;H.K.You,S.J.Ohh;H.Y.Lee.
  42. Bioscience v.46 Algal diversity and commercial algal products Radmer,R.J.
  43. J. Appl. Phycol v.6 Commercial applications of algae: opportunities and constraints Radmer,R.J.;B.C.Parker
  44. High purity beta-carotene and process for obtaining same Richheimer,S.L.;C.J.Kurtz;D.T.Bailey;Z.Z.Liu;R.Arslanian;R.J.Daughenbaugh;L.A.Kaufnlann;J.M.Piffarerio
  45. J.Appl. Phycol. v.6 Het-erotrophic production of ascorbic acid by microalgae Running,J.A.;R.J.Huss;P.T.Olson
  46. Phycologia v.35 Cyanobacterial toxins and toxin production Sivonen,K.
  47. J. Appl. Phycol. v.12 Microalgae as a source of bioactive molecules - experience from cyanophyte research Skulberg,O.M.
  48. Nutrition Bulletin v.25 n-3 fatty acids and health Stanner,S.
  49. Food Chem. Toxicol v.36 Safety evaluation of Nostoc flagelliforme (nostocales [sic], Cyanophyceae) as a potential food. Takenaka,H.;Y.Yamaguchi;S.Sakaki;K.Watarai;N.Tanaka;M.Hon;H.Seki;M.Tsuchida;A.Yamada;T.Nichimori;T.Morinaga
  50. New Phytol v.81 The heterocysts of the blue-green algae Nostochopsis lobatus: effets of culture conditions Tiwari,D.N.
  51. Bioresource Technol v.38 Lipid production by Phaeo-dactylum tricormutum Veloso,V.A.;Reis,L.;Couveia,H.L.;Fernandes,J.;A.Empis;J.M.Novais
  52. Enzyme Microb. Technol v.20 Microalgae-mediated chemicals production and wastes removal Vilchez,C.;I.Garbayo;M.V.Lobato;J.M.Vega
  53. Synechococcus sp. Lipids v.35 Production of eicosap-entaenoic acid by a recombinant marine cyanobacterium Yu,R.;A.Yamada;K.Watanabe;K.Yazawa;H.Takeyama;T.Matsunaga;R.Kurane
  54. Zeaxanthin production Zeagen Inc
  55. Japan, Patent 5219983 Zeaxanthin production Zeagen Inc.