인체 혈액암세포주(HL-60)에서 (-)-epigallocatechin-3-gallate에 의한 Aapoptosis 유도

Induction of Apoptosis by (-)-epigallocatechin-3-gallate in HL-60 Cells

  • 이해미 (연세대학교 식품영양학과) ;
  • 김연정 (연세대학교 식품영양학과) ;
  • 박태선 (연세대학교 식품영양학과)
  • 발행 : 2003.05.01

초록

(-)-Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound found in peen tea leaves, and has been known to be one of the most potent catechin species which inhibits cell growth most possibly through an apoptotic cell death. We investigated the apoptotic activity of (-)-EGCG on the human myeloid leukemia cell line, HL-60. Our results of MTT test indicated that (-)-EGCG had a significant antiproliferation effect in HL-60 cells with $IC_{50}$/ (50% inhibition concentration) value of 65 $\mu$M. Giemsa statining of HL-60 cells treated with (-)-EGCG (100 $\mu$M) for 6hrs showed a typical apoptosis-specific morphological change including shrinkage of the cytoplasm, membrane blobbing and compaction of the nuclear chromatin. The DNA fragmentation was observed from the agarose gel electrophoresis of cells treated with (-)-EGCG for 3hrs or longer, and was progressed to a greater degree as treatment time increases. Treatment of the cells with (-)-EGCG (100 $\mu$M) resulted in a rapid release of mitochondrial cytochrome c into the cytosol, and a subsequent cleavage of caspase-3 to an active form in a treatment-time dependent manner. (-)-EGCG (100 $\mu$M) also stimulated proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP) to an active form in HL-60 cells. Tlken together, (-)-EGCG appears to induce the apoptosis in human myeloid leukemia cells via a caspase-dependent pathway. These results suggest the possible application of (-)-EGCG, the major active compound in green tea, as an antiproliferative agent for cancer prevention.

키워드

참고문헌

  1. Am J Obstet Gynecol v.180 Changes in homocysteine levels during normal pregnancy Walker MC;Smith GN;Perkins SL;Keely EJ;Garner PR https://doi.org/10.1016/S0002-9378(99)70269-3
  2. N Eng J Med v.326 Intrauterine groeth retardation, perinatal death, and maternal homocysteine levels Burke G;Robinson K;Refwum H;Struart B;Drumm J;Graham I
  3. Lancet v.345 Homocysteine metabolism in pregnancies complicated by neural tube defects Mill JL;McPartlin JM;Kirke PN https://doi.org/10.1016/S0140-6736(95)90165-5
  4. Proc Natl Acad Sci USA v.93 Homocysteine induces congenital defects of the heart and neural tube:effect of folic acid Rosequist TH;Kirke PN https://doi.org/10.1073/pnas.93.26.15227
  5. Eur J Obstet Gynecol v.93 Hyperhomocysteinemia and pregnancy-review of our present understanding and therapeutic implications Aubard Y;Darodes N;Cataloube M https://doi.org/10.1016/S0301-2115(00)00282-7
  6. Am J Clin Nutr v.71 Folic acid:influence on the outcome of pregnancy Scholl TO;Johson WG
  7. Fertil Steril v.60 Hyperhomocysteinemia:A risk factor in women with unexplained recurrent early pregnancy loss Wouters MG;Boers GH;Blom HJ;Trijibels FJ;Thomas CM;Borm GF;Steegers-Theuissen RP;Eskes TK
  8. Am J Obstet Gynecol v.179 Effects of folic acid and vitamin B6 supplementation on women with hyperhomocysteinemia and a histtory of preeclampsia or fetal growth restriction Leena M;Riyazi N;de Vries JIP;Jakobs C;van Geijn HP;Dekker GA https://doi.org/10.1016/S0002-9378(98)70263-7
  9. Eur J Obstet Gynecol v.66 Hyperthomocysteunemia:A risk factor for placental abruption or infarction Goffojn-Wesel TAW;Wouters MGAJ;v.d.Molen EF;Spuijbroek MDEH;Steegers-Theunissen RPM;Blom HJ;Boers GHJ;Eskes TKAB https://doi.org/10.1016/0301-2115(96)02383-4
  10. J Clin Invest v.77 Protein-bound homocyst(e)ine Kang SS;Wong PWK;Cook HY;Norusis M;Messer JV https://doi.org/10.1172/JCI112461
  11. Am J Med Genes v.107 Genetic Polymorphisms of methylenetetrahydrofolate reductase (MTHER) and methionine synthase reductase (MTRR) in ethnic populations in Texas;A report of a novel MTHER polymorlhic site, G1793A Rady PL;Szucs S;Grady J;Hudnall SD;Kellner LH;Nitowsky H;Tyring SK;Matalon RK https://doi.org/10.1002/ajmg.10122
  12. Eur J Obstet Gunecol Reprod Biol v.92 Neural tube defects and a disturbed folate dependent homocyssteine metabolism van der Put NMJ;Blom HJ
  13. Atherosclerosis v.157 The methionine synthase reductase (MTRR) A66G polymorphism is a movel genetic determinant of plasma homocysteine concenttrations Gaughan DJ;Kluijtmans LA;Barbaux S;McMaster D;Young IS;Yarnell JW;Evans A;Whitehead AS https://doi.org/10.1016/S0021-9150(00)00739-5
  14. Mol Genet Metab v.70 A polymorphism (80G→A) in the reduced folate carrier gene and its associations with folate atatus and homocysteinemia Chango A;Emery-Fillon N;de Courcy GP;Lambert D;Pfister M;Rosenblatt DS;Nicolas JP https://doi.org/10.1006/mgme.2000.3034
  15. Baillieres Clin Heamatol v.12 Hyperhomocusteinaemia Perry,D.J.
  16. Trends in Pharmacol Sci v.22 Biological and clinical implications of the MTHFR C666T polymorphism Ueland PM;Hustad D;Schneede J;Refsum H;Vollset SE https://doi.org/10.1016/S0165-6147(00)01675-8
  17. Korean J Nutr v.33 no.3 Relationship between vitamin B6 status of maternal-umbilical cord plasma and pregnancy outcomes Ahn HS;Lee GJ;Kim YT
  18. Korean J Nutr v.35 Maternal vitamin B6 intake and vitamin B6 level in maternal, umbilical cord plasma and placenta Ahn HS;Lee GJ;Chung HW
  19. Korean J Nutr v.33 no.8 Serum folate levels of maternal-umbilical cord blood and pregnancy outcomes Ahn HS;Kim JS;Lee GJ;Kim YT
  20. J Chromatogr v.422 Determination of free and total homocysteine in human plasma by high performance liquid chromatograpfy with fluorescence detection Araki A;Sako Y https://doi.org/10.1016/0378-4347(87)80438-3
  21. Int J Vitamin Nutr Res v.57 A new HPLC-nethod for the simultaneous determination of B1-,B2- and B6-vitamers in serum and whole blood Botticher B;Botticher D
  22. Nat Genet v.10 A candidate genetic risk factor for vascular disease:A common mutation in methylenetetrahydrofolate reductase Frosst P;Blom HJ;Milos R;Goyette P;Sheppard C;Matthews R;Moers GJ;den Heijer M;Kluijtmans LA;van den Heuvel LP;Rozen R https://doi.org/10.1038/ng0595-111
  23. Am J Clin Nutr v.71 Is homocysteine a biomarker for identifying women at risk of complications and adverse pregnancy outcomes? Piccian MF
  24. Eur J Clin Nutr v.55 Homocysteine and methylmalonic acid levels in pregnant Npali women. Should cobalamin supplementation be considered? Bondevik GT;Schneede J;Refsum H;Lie RT;Ulstein M;Kvale G https://doi.org/10.1038/sj.ejcn.1601236
  25. Am J Clin Nutr v.71 Plasma total homocysteine, pregnancy complications and adverse pregnancy outcomes:the Hordaland Homocysteine Vollset SE;Refsum H;Irgens LM;Emblem BM;Tverdal A;Gjessing HK;Monsen ALB;Ueland PM
  26. Br J Obstet Gynaecol v.106 no.3 The placenta in maternal hylerhomocysteinaemia Khong TY;Hague WM https://doi.org/10.1111/j.1471-0528.1999.tb08243.x
  27. Obstet Gynecol v.91 Preventing neural tube defects:the importance of periconceptional folic acid supplements Locksmith GJ;Duff P https://doi.org/10.1016/S0029-7844(98)00060-X
  28. Lancet v.351 Acute hyperhomocysteinaemia and endothelial dysfunction Chambers JC;McGregor A;Jean-Marie J;Kooner JS https://doi.org/10.1016/S0140-6736(05)78092-2
  29. Yoo HG, Shin BA, Park JC, Kim HS, Kim WJ, Chay KO, Ahn BW, Park RK, Ellis LM, Jung YD. Induction of apoptosis by the green tea flavonol (-)-epigallocatechin-3-gallate in human endothelial ECV 304 cells. Anticancer Res 22(6A): 3373-8, 2002
  30. Mukhtar H, Ahmad N. Mechanism of cancer chemopreventive activity of green tea, Proc Soc Exp Biol Med 220: 234-238, 1999 https://doi.org/10.1046/j.1525-1373.1999.d01-40.x
  31. Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 19: 611-616, 1998 https://doi.org/10.1093/carcin/19.4.611
  32. Nicholson DW, Ali A, Thomberry NA, Vaillancourt JP, Ding CK Gallant M, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37-43, 1995 https://doi.org/10.1038/376037a0
  33. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346-347, 1994 https://doi.org/10.1038/371346a0
  34. Suzuki N, Urano J, Tamanol F. Farnesyltransferase inhibitors induce cytochrome C release and caspase 3 activation preferentially in transformed cells. Proc Natl Acad Sci USA 95: 15356-15361, 1998 https://doi.org/10.1073/pnas.95.26.15356
  35. Samali A, Zhivotoxvsky B, Jones D, Nagata S, Orrenius S. Apoptosis: cell death defined by caspase activation. Cell Death Differ 6: 495-496, 1999 https://doi.org/10.1038/sj.cdd.4400520
  36. Baliga BC, Kumar S. Role of Bcl-2 family of proteins in malignancy. Hematol Oncol 20(2) : 63-74, 2002 https://doi.org/10.1002/hon.685
  37. Chung LY, Cheung TC, Kong SK, Fung KP, Choy YM, Chan ZY, Kwok TT. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci 68: 1207-1214, 2001 https://doi.org/10.1016/S0024-3205(00)01020-1
  38. Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate -induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410(1): 177-185, 2003 https://doi.org/10.1016/S0003-9861(02)00668-9
  39. Chen W, Dong Z, Valcic S, Timmermann BN, Gowden GT. inhibition of ultraviolet B -induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (-)-epigallocatechin gallate in a human keratinocyte cell line. Mol Carcinog 24: 79-84, 1999 https://doi.org/10.1002/(SICI)1098-2744(199902)24:2<79::AID-MC1>3.0.CO;2-E
  40. Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys 376: 338-346, 2000 https://doi.org/10.1006/abbi.2000.1742
  41. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G. Mitochondrial permeability is a central coordinating event of apoptosis. J Exp Med 184: 1155-1160, 1996 https://doi.org/10.1084/jem.184.3.1155
  42. Kroemer G, Martinez AC, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 18: 44-51, 1997 https://doi.org/10.1016/S0167-5699(97)80014-X
  43. Hsu SD, Singh BB, Lewis JB, Borke JL, Dickinson DP, Drake L, Caughman GB, Schuster GS. Chemoprevention of oral cancer by green tea. Gen Dent 50(2): 140-6, 2002