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ABSTRACT

In this study, we propose a mathematical model based on the graph theory for the wave—
length assignment problem arising in the design of SDH (Synchronous Digital Hierarchy)
over WDM (Wavelength Division Multiplexing) ring networks. We propose a branch—and—
price algorithm to solve the suggested models effectively within reasonable fime in real—
istic SDH over WDM ring networks. By exploiting the structure of ring networks, we de—
veloped a polynomial time algorithm for efficient column generation and a branching rule
that conserves the structure'of column generation. In a computer simulation study, the
suggested approach can find the optimal solutions within reasonable time and show better

performance than the existing heuristics.
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1. INTRODUCTION

The fast growth of the Internet has brought about rapid exhaustion of core trans-
port capacity. WDM (Wavelength Division Multiplexing) technologies have emerged
as a viable technology to deal with the increasing telecommunication traffic in a
cost-effective way and will continue to be deployed on a large scale [13].

Currently, fiber optic ring networks in the form of TDM (Time Division Mul-
tiplexing) that is standardized as SDH (Synchronous Digital Hierarchy) technolo-
gy have been deployed widely by the telecommunication service providers for the
past decades due to their advanced protection and network management capabili-
ties. Considering the progress of telecommunication evolution, current SDH rings
will not completely replaced with the all-optical WDM rings since the traffic
grooming is more efficient when SDH layer technology over WDM layer is used.
Therefore, WDM rings will co-exist with the current SDH rings at least in near
future. This hybrid transmission architecture is called as SDH over WDM rings
[13, 5]. '

When there is a traffic requirement, an optical channel, called lightpath, with
dedicated wavelength between the source node and the destination node of the
optical channel must be established. Two lightpaths that traverse the same
physical link must be assigned the different wavelength. This requirement is
called wavelength-continuity constraint.

Figure 1 shows an example of lightpath connection and the wavelength as-
signment in SDH over WDM rings. As we can see in Figure 1, the terminating
equipments in SDH over WDM rings are OADMs (Optical Add-Drop Multiplexer)
and SDH ADMs. Since OADMs can selectively add and drop wavelengths at a
node, it can optically bypass the wavelengths that do not carry any traffic from or
to the specific node. This means that SDH ADMs are required at a node if and
only if it carries traffic terminating at this node. Therefore, in SDH over WDM
ring architecture, a gooci ‘design algorithm can reduce the number of SDH ADMs
by assigning wavelength efficiently. -

It is well known that the total system cost of SDH over WDM rings is domi-
nated by the number of SDH ADMs rather than the number of wavelengths. The
number of SDH ADMs and the number of wavelengths may not be minimized
simultaneously [4-5]. Therefore, it is necessary to use the number of SDH ADMs
as small as possible in order to design the cost-effective SDH over WDM ring
networks.

The wavelength assignment problem in WDM networks, which is to minimize
the number of wavelengths while satisfying the wavelength-continuity constraint,
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corresponds to the path-coloring problem in graph theory. See [8] and [11] for the
related path-coloring problem. However the traditional graph-coloring algorithms
can not be directly applied to the wavelength assignment problem in SDH over
WDM rings because it has a different objective function. Therefore, new models
and algorithms must be developed to minimize the number of the SDH ADMs.

"OADM lightpath3  QADM OADM

Figure 1. Structure of SDH over WDM Ring

In this paper, we assume that the routes of lightpaths are pre-fixed. Hence
we focus on the wavelength assignment problem and do not.consider the routing
problem. We propose a new graph-theoretic integer programming formulation
that has reasonably many constraints but has huge number of variables. We sug-
gest a branch-and-price method to get an optimal solution. We develop a polyno-
mial time algorithm for the effective column generation to handle many variables.

The remainder of this paper is organized as follows. In section 2, we describe
the wavelength assignment problem for SDH over WDM rings and present some
related backgrounds. In section 3, we propose an Integer Programming formula-
tion. In section 4, we suggest an exact algorithm to solve the formulation: pro-
posed in section 3. In section 5, we show, by computational experiments, that the
suggested algorithm can find optimal solutions for real-sized SDH over WDM ring
networks within reasonable time. We also do the performance comparisons with
some generic heuristics. In section 6, we give some concluding remarks and dis-
cuss further research topics.

2. BACKGROUNDS

1.1 State of the arts

Many works has been conducted for the problems related with WDM ring net-
works as we can see in Table 1. [4] showed that the number of wavelength and
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the number of SDH ADMs can not be minimized simultaneously. They proposed
two kinds of heuristics for the wavelength assignment and some kinds of post-
assignment transformations such as merging, combining and splitting. They also
analyzed the lower bound and the worst-case ekample for each heuristic. [10]
showed that the wavelength assignment problem to minimize the number of SDH
ADMs 1s NP-Hard. They also showed that minimum ADMs problem equals to the
maximum ADMs sharing problem. [12] considered the traffic grooming and
wavelength assignment problem simultaneously. They analyzed the lower bound
and proposed two heuristics, each for minimizing wavelength and number of
SONET ADMs. They analyzed the performance of suggested algorithms for realis-
tic different traffic patterns such as uniform, non-uniform and distance-dependent
traffics. Recently, [16] proposed a flow-based integer programming formulation
that has exponentially many constraints with respect to the number of lightpaths.
They also suggested some heuristic algorithms.

Table 1. Review of previous works

Ref. Number| Ring architecture [Addressed problems Main result
[15] all-optical WDM ring Wayelength Uppe?r bound for wavelength
Assignment required
(3] all-optical WDM ring Wavelength Analysis of wavelength
(4-fiber bi-directional)|. Assignment required for uniform traffic
Routing and IP formulation
9] all-optical WDM ring Wavelength Exact solution algorithms
Assignment Greedy heuristics
SDH ADMs and wavelength
. Wavelength may not be minimized simulta-
4] SDH over WDM ring Assignment neously. Greedy heuristics
) (Assign First and Cut First)
[12] SDH over WDM ring Trﬁc S:?loﬁlmg Lower bound for wavelength
(Bi-directional) veleng and SDH ADMs
Assignment
Waveleneth Proof of NP-completeness
[10] SDH over WDM ring Assi nmint (3+e)/(1+e) approximation
‘ & algorithms Greedy heuristics
. Wavelength Circle Segment heuristics
[16] SDH ov\er WDM ring Assignment Flow based IP formulation
. . Wavelength Graph theoretic IP Formulation
This paper | SDH over WDM ring Assignment Branch-and-price algorithm
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1.2 Wavelength Assignment in SDH over WDM ring Problem (WA_SWR)

In this section, we will describe the WA_SWR problem by using the following
small example. Figure 2 shows two kinds of wavelength assignment examples for
the same traffic set of T on 6-node ring, where {0, 1, 2, 3, 4, 5} is a set of nodes
and T =1{ (0, 2), (3, 5), (2, 4) } is the set of light paths. In Figure 2, 6-node ring is
represented linearly for convenience. We call lightpath 1, lightpath 2, lightpath 3
for each traffic requirement between (0, 2), (3, 5), (2, 4), respectively.

T=1{0,2), 3, 5), 2 4}

A"

Shared ADM

\.:

[ X)
- XY

o1 .
Ay ¢ .
i@ SN ;
L ] L ] . L] L ] . .
0 1 2 3 4 5 0 1 2 3 4 5
Assignment A Assignment B
4 of ADMs 6 #of ADMs 5
4 of wavelength 2 4 of wavelength 2

Figure 2. Example of wavelength assignment

As we can see in Figure 2, lightpath 2 and lightpath 3 can not be assigned the
same wavelength because they traverse the same physical link (3, 4). Therefore, it
requires at least two wavelengths for each assignment. However, the assignment
A requires 6 SDH ADMs while the assignment B requires 5 SDH ADMs since
there exists one ADM that is shared at node 2.

As we see in this example, it is necessary to maximize the number of ADM
sharing as much as possible. The conditions for ADM sharing are a) two light-
paths are assigned same wavelength and b) two lightpaths have common end
points {4].

There are four kinds of relations between a pair of lightpaths: (a) they traver-
se the same physical link, (b) they do not traverse the same physical link but do
not have a common end point, (¢) they do not traverse the same physical link and
they have one common end point and (d) they do not traverse the same physical
link and they have two common end point. In case of (a), they can not be assigned
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the same wavelength due to the wavelength continuity constraint and conse-
quently the ADM sharing can not happen. In case of (b), they can be assigned the
same wavelength but the ADM sharing can not happen since they violate the
sharing condition. In case of (c) and (d), they can be assigned the same wave-
length and the ADM sharing can happen. In case of (d), there exists an optimal
wavelength assignment such that the pair of lightpaths is assigned with the same
wavelength [16]. Therefore, we can first find the pair of lightpaths in case (d) and
assign the same wavelength for them, and then find the optimal wavelength as-
signment for the rest of the lightpaths. In case of (¢), we may think that assigning
the wavelength first for the pair of lightpaths may bring about much ADM shar-
ing. However, as we can see in Figure 3, this greedy heuristic method may require
11 SDH ADMs but the minimum number of SDH ADMs is 8. Therefore, it is ne-
cessary to develop an optimization model and an exact algorithm to design the
cost-effective SDH over WDM ring networks.

T={12),23), (3,4, 45),43), 3, 2), 2 1)
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1 2 3 4 5 2 3 4 5
Greedy Heuristic Optimal Solution
# of ADMs 11 # of ADMs 8
# of wavelength 4 # of wavelength 4

Figure 3. Bad case example of greedy heuristic

3. MATHEMATICAL MODELS

In this section, we will describe a mathematical model for the WA_SWA problem
that is the problem of assigning a wavelength to each lightpath (i.e coloring a cor-
responding path on the graph) in order to maximize the ADMs sharing while sat-
isfying the wavelength-continuity constraint.

The path-coloring problem can be transformed as the well-known vertex-
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coloring problem by using a conflict graph, where we define a vertex in the con-
flict graph for each lightpath and define an edge between two vertices of the con-
flict graph if the routes of two lightpaths traverse the same physical link [6], [8].
The set of lightpaths on ADM ring topology constitutes a special conflict graph so
called the Circular Arc Graph (CAG). The set of vertices with the same color of
the conflict graph can be found by finding an Independent Set (IS) on the corre-
sponding CAG [8], where an independent set is the set of vertices such that there
is no edge connecting any pair of vertices of the independent set [6]. Now we in-
troduce the WA_SWR problem as the following Integer Programming (IP) prob-
lem. '

Let G = (V, E ) be an undirected conflict graph, where V is the set of vertices
and E is the set of edges. Let n be the cardinality of V and S be the set of all ISs of
G. We define a binary variable x, =1 if s will be given an unique color (wave-

length), while x, =0, otherwise. Let W, be the weight of s. In this paper, we
means by W, the number of SDH ADMs required to assign the wavelength for all
the lightpaths in s. By using the above notation, we have:

(WA_SWR)

Minimize Y W, x, ‘ / (1)

Subjectto Y x, =1, VieV, - (2)
{siieS)

x,€{0,1}, VseS. 3

The objective function (1) means to minimize the total number of SDH ADMs
required to assign the wavelength for each lightpaths. The constraints (2) and (3)
imply that one vertex of the conflict graph must be included in one IS, (i.e, A
lightpath must have the unique wavelength).

As we can see in Figure 2 in section 2, it is easy to find that W, equals the two

times the number of lightpaths minus the number of shared ADMs. For the
example in Figure 2, W, equals 2x2-0=4 and W, equals 2x1-0=2 in assign-
ment A, while W, equals 2x2-1=3 and W, equals 2x1-0=2 in assignment B.

It can be notated mathematically as 2) x; - > x;x;, where E' is the subset

ies i, jeE" ‘
of E such that the ADMs sharing between the lightpaths is possible. Note that
W, is not an explicit function with respect to the lightpaths. This makes it diffi-
cult to apply the existing graph algorithms directly to generate the favorable col-
umns. In section 4, we will explain in detail how we resolve this difficulty.
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4. A BRANCH-AND-PRICE APPROACH

Our IP formulation has only one constraint for each vertex of the conflict graph
(lightpath). However, the number of decision variables is huge since the number
of all ISs of a graph G can be exponetially large. Therefore generating all ISs of a
graph to get the explicit formulation is intractable (except for very small size SDH
over WDM ring networks). Hence solving even the Linear Programming (LP)
relaxation may be computationally difficult if we try to solve the explicit formulation.
We resolve this difficulty by using only subset of the decision variables and
generating more variables when they are needed. This technique, called column
generation technique, is successfully used to solve the LP problems with many
variables [2]. An optimal solution to LP problem with many columns can be ob-
tained without explicitly including all columns since only a very small subset of
all columns will be in an optimal solution.

Branch-and-price approach that is a column generation techniques for IP
within a branch-and-bound method has an additional computational advantage:
The column generation formulation of an IP may have a stronger LP relaxation
than a canonical compact IP formulation, which is a very important advantage for
avoiding long computation time of a branch-and-bound algorithm. See [2] and [11]
for general expositions of the column generation approach to IP.

In our problem, the column generation procedure for the LP relaxation is de-
scribed as follows. Begin with S', a subset of S, the set of all ISs. Solve the LP

relaxation of restricted to all se S'. This gives a feasible solution for the LP re-
laxation and a dual value z; for each constraint ¢ of the original (primal) LP re-

laxation. Now, determine if we need more columns (i.e., if we need more ISs) by
solving the following subproblem that is denoted by SP.

(SP)
Max Zﬂi—Ws,VseS (4)
les
- Max Y 7mx;+ >.%x,x;~2Y %;, Vse S )
ies i,jeE" ies

Note that SP is to find the set of ISs that maximizes the function (4). The
first term of the objective function (4) is the sum of dual variables associated with
each IS and the second term is the weight of the IS. As noted in [7], when the
weight of IS can be defined explicitly, Maximum Weighted Independent Set
(MWIS) in the CAG can be solved by computing the MWIS in the Interval Graph
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(IG) iteratively, where IG is a special case of CAG without forming a cycle [6].
However, since the weight in our problem is not explicitly defined (i.e., the objec-
tive is not a simple summation of the each lightpath), it requires a modified algo-
rithm to deal with SP.

4.1 Algorithm for SP in I1G

Before describing the algorithms for SP in CAG, let us consider the following SP
in IG.

Input : 1G G with weight w; for each lightpath .
Output : A set of lightpaths.
Objective : Maximizes the function (5)

We suggest that SP in IG is transformed to the longest path problem in a
modified network. Note that the longest path problem is NP-Hard in general net-
work but the problem is solvable in polynomial time for acyclic network. Since our
modified network for SP has no directed cycle, we can find the longest path in
polynomial time using the topological ordering algorithm [1]. Therefore, SP in IG
can be computed within polynomial time bound. The detailed procedures are as

follows;
Algorithm for SP in IG :

Step 0 : Initialization. Sort the lightpaths from the most left node

Step 1: Network Construction. Construct the associated network as follows:
For all pairs of lightpath i, j i <j), if two lightpaths do not overlap, add
edge (1,7 ).
If two lightpaths have a common end point, set the edge weight as w;+ 1.
Else, set the edge weight as w;

Step 2 : Network Transformation. Add artificial node s, t as follows:
For all lightpaths j, add edge (s, j) with edge weight w; and (j, ¢t) with
edge weight 0.

Step 3 : Solve. Find longest path from node s to node ¢.

Step 4 : Get Solution for SP. The set of arcs included in the longest path is the
solution for SP in I1G.

In Figure 4 below, (c) is the transformed network from the IG in (b), and (d) is

the resulting solution after performing step 3 for the transformed network in (c¢).
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4.2 Algorithm for SP in CAG

Now we will show that SP in CAG can be solvable in polynomial time by using the
above algorithm for SP in IG iteratively. By using the fact that when the G is the
CAG, the remaining graph after deleting all intersecting nodes with arbitrary
node reduces to the IG. SP in CAG can be solved in polynomial time bound since
the number of node in G is finite.

Algorithm for SP in CAG:

Step 0 : Initialization. Label all nodes as unmarked. Let wt_max be negative
infinite and wt(v) be the weight of node v. N(v) is the set of adjacent node
with node v

Step 1 : Network Construction. Select any unmarked node v and construct IG
G’ by deleting the node'v and N(v). Increase the weight of nodes which
has a common end point with v by 1.

Step 2 : Solve. Solve the SP in corresponding G’ and find the solution wt*.

Step 3 : Solution update. If wi(v) + wt* > wi_max, then wi_max = wt(v) + wi*.

Step 4 : Terminate. If all nodes are marked, terminate. Else, let node v as
marked and go to step 1.

In Figure 4 below, (a) is the original CAG and (b) is the resulting IG after
performing step 1 for the lightpaths 7 selected.

w6
‘(‘ G
w3
. *———eo
w2 wH
w5 wl [ o owa L
1 —l ——e o ——e

w5

CY

Figure 4. Step 1 for algorithm for SP in CAG
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4.3 Branching Rule

When the optimal solution of LP relaxations obtained through the above column
generation procedure is not integral, we need to branch some fractional variables.
For effective implementation of branch-and-price approach, it is necessary to have
a branching rule that conserves the structure of column generation structure.

First, moving clockwise once around the ring from arbitrary starting point,
we can index the vertices according to the order in which the counterclockwise
endpoints of the corresponding lightpaths occur (tie-break arbitrarily). Then we
will select the pair of vertices that are independent and most nearest with respect
to the index. We will call it as minimal distance branching rule.

The suggested branching rule is composed of two operations, called SAME(,
j) and DIFFER(, j). SAME(, j) is an operation to collapse two vertices i and j (i <
j) into single vertex. It means to merge two lightpaths corresponding to the vertex
i and j into one lightpath by extending the counterclockwise endpoint of j to the
clockwise endpoint of i. DIFFERG, j) is an operation to add edge between the ver-
tex i and j. It means to extend the clockwise endpoint of i such that it is larger
than the counterclockwise endpoint of j but smaller than the counterclockwise
endpoint of j+1. (See the example in Figure 5 for more explanation)

SAME, 5)

W.G/w’?.{

w w

Figure 5. Example of minimal distance branching
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In this section, we will show that the suggested branching rule conserves the
structure of the column generation procedure by using the quasi—circulaf‘ Is
property. Let M(G ) = (my),, be the augmented adjacent matrix for CAG G and U,
(V) be the set of consecutive 1’s below (rightward) from the i®* diagonal element of
M(G); regard the matrix as wrapped around a cylinder. If the union of U; and V;
covers all 1's in M(G), then M(G) satisty the quasi-circular 1’s property. Refer to
[14] for the details of quasi-circular 1’s property.

Proposition 1. An undirected graph G is a CAG if and only if M(G) has quasi-
circular 1's property [14].

Theorem 1. The suggested branching rule conserves the structure of column

generation procedure.

Proof. We will show that the graph G after performing the branching operation

for CAG G is also CAG. Let M(G )=(m ;)qn be the augmented adjacent matrix for

G and U; (V;)be the set of consecutive 1's below (rightward) from the i di-
agonal element of M(E ). Let A, be the set of elements in {1,---,i} at the i® column
and B; be the set of elements in {i +1,---,n} at the i'* column. Assume that the

index of vertex i precedes that of vertex j and SAME(, j) operation collapses two
vertices ¢ and j into i’. By definition, SAMEQ, j) operation takes the value 1 if at
least one of the row i and j has value 1. For the new 1's in B, at the i column of

M(a_ ), it is easy to know that U, includes the all 1's which was in U; and U;.

Furthermore, U, is consecutive because we select the vertex j which is the first
0's when we are moving below (rightward) from the i diagonal element of M(G).
For the new 1's in A, at the i column of M(G), they must be included U; of M(G).

If it is not true, it contradicts the assumption that the G has the quasi-circular 1's

property. Therefore, SAME(, j) operation conserves the quasi-circular 1's prop-
erty. By definition, DIFFER(, j) operation changes the value of m;j (m}i ) from O to
1. Because we select the vertex j which is first 0's when we are moving below
(rightward) from the i* column of M(G), it is easy to know that U, (U} ) includes

s

the 1’s of m;j (mj; ) and is consecutive. Therefore, DIFFER(, j) operation conserves

the quasi-circular 1's property.
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5. EXPERIMENTS RESULTS

The proposed algorithm has been coded in C and experimented on an engineering
workstation (167Mhz CPU) using an IP optimization callable library, CPLEX 6.0.
By the experiment, we want to show that the suggested algorithm is computa-
tionally feasible to implement in real-sized SDH over WDM rings. We also want
to compare the suggested algorithms with the generic heuristics developed by [4].

Table 2. Problem instance (average of 5 instances)

G(nd) VERT EDGE DEGREE

1 G (5,0.3) 6 11.2 4

2 G (5, 0.5) 10 34.8 6.8
3 G5,0.7) 14 65.2 7.8
4 G (5,0.9) 18 113.6 9.8
5 G (10, 0.3) 27 282.6 16.6
6 G (10, 0.5) 45 799.6 26

7 G (10, 0.7) 63 1564.8 34.4
8 G (10, 0.9 81 2615 43.2
9 G (15, 0.3) 63 1594.8 36.4
10 G (15, 0.5) 105 4325.6 56.8
11 G (15, 0.7) 147 8736.2 77.8
12 G (15,0.9) 188 14226.4 96.8
13 G (20, 0.3) 114 5307.2 62.8
14 G (20, 0.5) 190 14677.8 102.8
15 G (20, 0.7) 266 28681.4 139.4
16 G (20, 0.9) 342 47771.2 175.6

We experiment four classes of problem instances that have 5, 10, 15, and 20
ring nodes. To know the effect of demand on the ring to the performance, we di-
vide each class of node sizes into four demand sets by setting the demand density
of 0.3, 0.5, 0.7, and 0.9, which is defined as the probability that requires one
lightpath for a pair of ring node. Input parameters of twenty sets are summarized
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in Table 2. In Table 2, G(n,d) represents that n is the number of ring nodes from 5
to 20, and the d is the demand density from 0.3 to 0.9. “VERT”, “EDGE” and
“DEGREE” in Table 2 denotes respectively the number of vertices, the number of
edges and the average degree in the conflict graph. Note that “VERT” 1s the same
in a given set but the “EDGE” and “Degree” can be different according to the
overlapping conditions for each instance. The largest size of the graphs has 342
nodes and 47,886 edges.

Average performances of five instances for each set are displayed in Table 3.
In Table 3, “Heuri” denotes the number of SDH ADMs obtained by the heuristic of
[4]. This heuristic is also used as an initial solution of the suggested algorithms.
“COLs” denotes the average number of columns generated and “BnBs” denotes
the average number of branch and bound tree nodes to get the final integer solu-
tion. “LP” denotes the average of the optimal objective values of the LP relaxa-
tions and “OPT” denotes the average of the minimum numbers of SDH ADMs
obtained by the suggested algorithms.

Table 3. Average performance of branch—and—price approach

Heuri COLs LP BnBs OPT. Time
1 10 2.2 9.6 0 9.6 0.01
2 15.4 3.6 14.8 0 14.8 0.016
3 19.8 9 17 0 17 0.04
4 25.4 17.2 19.8 0 19.8 0.088
5 43.2 21.2 39.2 0 39.2 0.15
6 70.6 52.2 59.4 0 59.4 0.598
7 94.6 101.4 77 -0 77 1.748
8 118.6 177.6 88.2 0 88.2 4.48
9 100.6 74.8 91.2 0.8 91.2 1.214
10 158.6 216.8 138.6 0 138.6 7.166
11 224 431.4 176.2 0.4 176.2 27.018
12 272.8 769.6 201.8 0.2 201.8 75.136
13 178 197.8 161.8 0.2 161.8 8.066
14 290.6 475 247.2 0.2 247.2 41.636
15 398.8 1206 316.6 2.6 316.6 219.29
16 498.2 1763 367 0 367 522.64
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As you can see in Table 3, our branch-and-price algorithm can solve any in-
stance of 100 instances in less than 523 seconds. Many instances can be solved
within a few seconds. The branch-and-price algorithm does not require generating
huge number of columns to get the optimal solution for the LP relaxations.
Moreover, after getting an LP optimal solution on the root node of branch and
bound tree, the algorithms can be terminated without traversing many branch
and bound tree nodes. This can be possible since our graph theoretic formulation
for WA_SWR has a very strong LP relaxation as we can see in Table 3. Note that
the value of LP is near the value of OPT.

As we can see in Figure 6, our branch-and-price algorithm outperforms the
existing heuristics AFH (Assign First Heuristic) and CFH (Cut First Heuristic)
about 15%, 24% respectively in terms of the number of SDH ADMs. Furthermore,
the performance gap increases as the traffic load becomes heavy. Between two
heuristics, CFH uses more SDH ADMs than AFH since it generates additional
lightpaths by splitting an original lightpath into two lightpaths if it is necessary.

B Assign First
O Cut First

Performance Gap

Problem Instance

Figure 6. Performance comparison with heuristics with respect to SDH ADMs

In terms of wavelengths, our algorithm requires 10% less than AFH but 3%
more than CFH as we see in Figure 7. Note that minimization of SDH ADMs does
not imply wavelength minimization. The objective of our model is not minimizing
the number of wavelengths but minimizing the number of SHD ADMs.
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1.2 B Assign First |
3 Cut First

Performance Gap
° °
(=] @

e
rS

0.2

1 2 3 4 5 8 7 8 9 10 " 12 13

Problem Instance

Figure 7. Performance comparison with heuristics with respect to wavelengths

6. CONCLUSIONS

In this paper, we have shown that the wavelength assignment problem to mini-
mize the number of SDH ADMs can be formulated as an IP problem, and the
problem can be exactly solvable up to 20 ring nodes that are enough large to meet
explosive future demands. To accomplish this, we exploited properties of CAG and
suggested a branch-and-price algorithm to get the exact optimal solutions. The
computer simulation shows that the suggested algorithm could find the optimal
solution within reasonable time and better performance than the known heuristic
methods.

In this paper, we do not consider the traffic grooming of SDH traffic and sur-
vivability problem. Extending the current research to the traffic grooming and/or
restoration optimization is one of the further research topics for SDH over WDM
ring networks.
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