Analysis and description of the Visual Image Structure of Lemon Juice Squeezer, designed for Italy ALESSI company by Philippe Starck

조성근(Seong-Kun, Cho)

극동대학교 예술학부
1. 서론
 1.1 연구의 목적
 1.2 연구의 범위 및 방법

2. 필립 스타크(Philippe Starck)의 디자인관
 2.1. 생애
 2.2. 조형정신

3. ‘레몬즙搾개(Lemon Juice Squeezer)’의 형상화 절차 분석
 3.1. 시각형상의 구조 분석 방법
 3.2. ‘레몬즙 짰개’의 시각형상 구조 분석

4. 필립 스타크의 1990년작 ‘레몬즙搾개(Lemon Juice Squeezer)’에 대한 시각형상 기술

5. 결론

참고문헌

(요약)
제품에 대한 이미지 표현은 그것의 시각형상(visual image) 구조가 파악되어야 보다 합리적으로 기술할 수 있다. 시각 표현이라는 주관적 문제도 분석을 하지 않으면서는 절대로 되지 않고, 단순히 제품의 시각형상 전모가 밝혀져야 그 속에 담긴 디자이너의 사상적 배경도 추론해 볼 수 있는 것이다.
따라서 본 연구는 실제 주방용품 중에서 필립 스타크(Philippe Starck)가 다자인한 ‘레몬즙 짰개(Lemon Juice Squeezer)’를 대상으로 시각적 표현이 가지는 구조를 분석한 후, 그 제품의 특정 이미지가 어떻게 구성되어 있는지 기술한 것이다. 제품에 담긴 표현이 분석된다면 그것은 제품의 구성성을 밝히 디자이너와 사용자 간에 상호 이해의 폭을 증진시킬 수 있음을 의미한다. 연구방법으로는 헴브리지(Hambidge, J) 교수의 ‘The Elements of Dynamic Symmetry’를 토대로 수리적 모형을 도입하여 레몬즙 짰개 이미지의 기본 내지 전체를 포괄하는 결합체(Paradigm) 분석을 시도하고, 제품공간 내에서 설정되는 범위를 정의해 주는 결합체(Syntagma) 분석을 행한 후, 이를 표기하는 기술은 김두영 교수의 시각 기호 기술법을 따랐다.
결론적으로 본 연구는 항후 공간과 소품과의 관계, 제품과 사용자와의 관계, 오보제 자체의 조형 비평 내지는 분석이 정립적으로 활용할 수 있는 소재를 경계하는 차원에서, 그 대안으로 제품에 대한 시각형상의 구조와 성분분석을 수리적 모형을 통해 밝히고, 형식과 내용의 관계를 기술적으로 확인할 수 있는 분석기술적 방법을 제시하였다.

(Abstract)
The modeling analysis for objects placed in a given space can be described objectively when their visual image structure is grasped. It can’t be answered without first analyzing the basic program, visual expression. And when the whole aspect of the visual image of the desired interior utensils is presented, the mindset of its designer can be deduced from that. Therefore, the study was based on the lemon juice squeezer, one of the interior kitchen utensils that Philippe Starck designed for Italy ALESSI company. For the study method, putting ‘The Elements of Dynamic Symmetry’ by Prof. Jay Hambidge into practice, 'paradigm' analysis containing the whole ‘lemon juice squeezer’ image was attempted. And to describe it, the visual mark description method by Prof. Bok-Young Kim was used.

In conclusion, henceforth, the relationship between interior space and articles, the relationship between object and user, the modeling critique or analysis of the production itself should not be intended to be emotional. On the contrary, the study presented an art analytic methodology that can analyze and describe the visual image structure numerically, and confirm the relationship between form and content.

(Keyword)
시각형상(Visual Image), 계열체(Paradigm), 결합체(Syntagma)
1. 서론

1.1. 연구의 목적

오늘날 우리는 각기 이어져 올겨진 것을 봤으며, 그것을 하나의 기초로 바탕으로 이어지는 시대에 살고 있다. 시각을 뒤에 우리
는 기초로 인지한다. 인지의 범주에, 추리, 판단, 결론, 문제 해결, 연해 등 고등 정신 작용 모두 포함한다. 이러한 고등 정신 과정
들의 통합된 특징은 기생에 저장되어 있는 지식을 활용하여 진행
된다는 점이다. 따라서 시간의 객관 속에서 저장하고, 또 캐내는
기억 기록들은 염에의 과정, 즉 인지과정의 바탕이 된다.

여기서 시각적 자극들을 시각적 개념으로 끌어 기여할 수 있다.
예를 들어 바둑의 수도는 현재 진행중인 바둑판을 단 몇 초만
에 보고서도 그 바둑판에 채워진 된 바둑판의 바둑돌들을 기억해
내는 바둑을 요르치는 것은 훨씬 보이게 된다. 이것은 고등
수의 단기 기억 수용이 소수의 단기 기억 수용보다 더 크기
때문이다. 단순 그들을 잘 아는 정석의 무단을 쉽게 알아보
고 정석 모양을 중심으로 한 바둑돌들의 배치상태를 시각적으
로 개념화시킬 수 있기 때문이다.

그렇다면 제안의 시각상상(Visual image)이 우리에게 부분적으로
인지하면서 동시에 통합된 하나의 형태로 인지되는 것은 어떠한
적절성을 통해일까? 이의 해석은 제안의 시각상상 구조를 반
온보아 가능하다. 심리학에서 시각상상(Visual Shape Template)
은 시각 공간에 정위된 것과 반면의 경계를 의미하는 데, 그 시형의 배경과 시형의 표면에 담긴 영역을 말하는 시형
상의 구조를 최대화한다. 그것은 수면적인 깊이의 변화에 따른
세계적 분위가 해당된다. 이것은 또 오직한 데 제품 분위가 감정
적으로 흐리게 될 수 있다. 제품 이미지 분위가 개방성을 따르면
시각상상 구조를 막아야할 적절이 전개되어야 한다. 다루고 하자
주방용품의 천조가 밝혀져서 그것은 디자인의 디자이너의 사상을
배경도 부존해 될 수 있다.

우리는 단지 특정한 이미지를 물들, 그 이미지의 성품을 보는 것
은 아니다. 따라서 제품의 이미지와 구성성분은 따로 분리시켜 보
어야 한다. 이를 위해서 제품은 분격적에 담긴 영역을 알아야 하기
는 기저구조를 먼저 검토한 후, 표면구조를 찾아야 하고, 그것은
분리시켜 제품의 구성성분을 분석하는 경계가 되는 것이다.

이런 축면에서 본 논의의 연구 목적이 조형 분석 내지 비평적
추상적 혹은 주관적 해석에 차이가 있고 기술할 수 있는 객관적
적 처리 모델을 탐색하려는 것이다.

1.2. 연구의 범위 및 방법

연구 대상은 인테리어 주방용품 중에서 필립 스타크(Philippe
Starck)가 이래로 ALESSI사를 위해 디자인한 레몬축척(Lemon
Squeezer)로 한다. 이 제품은 인테리어에 ‘Juicy Salif’라고 불리며
건축가 겸 디자이너로 활동하고 있는 필립 스타크가 1990년에 선보
인 것으로 소위 작가의 밝간에 속한다. 스타크의 디자인이 초현
실적인 것이며 솔직스러운 기법이기로도 유리하다.

이 제품은 물체 상단에 레몬을 갖다대고 손으로 끌어내면 레몬수
이 물체의 흠을 타고 밑으로 흘러내려간 상태이니, 그것
물체가 아래로 ‘하강’하는 이미지를 주는 반면, 물체를 지지하는 3
개의 다리로 위로 ‘상승’하는 이미지를 인식되며, 하강과 상승의
상반된 차이에서 오는 시각상상의 구조와 구성성분은 수비적 모
델을 통해 분석하고, 형식과 내용의 관계를 객관적으로 확인가능
한 분석해석 방향을 연구하고자 한다.

2. 필립 스타크(Philippe Starck)의 디자인원

2.1. 생애

필립 스타크는 1949년 12월 18일 프랑스 파리에서 출생하였다. 스타크
은 아름다움에 미적 중점을 두었다. 이것은 비평한 애니메이션
로 알려진 흔적이 멋진다. 1960년대 중반부터 스타크는 파리에
Ecalo Nissim de Camondo를 다녔으며, 1960년대에 프랑스을 이용
한 물건을 제작하기 위해 자신의 첫 공장을 열기도 했다.

1970년대에 그는 파리의 나이트 클럽 La Main Bleue (1976)와
Los Bains Douches(1978)를 소유하였다. 1979년에는 Strock
Product라는 디자인 사무실을 열었다.

1980년대초 그는 인테리어 디자이너로서 미태한 프랑스 대독점을
위해 엘리트 궁전 안에 개인 아파트를 제작하여 명성을 얻게
되었다. 그리고 1984년 파리의 Costes 카페를 디자인하였으며, 1985
년에는 일본 동영상을 만든, 1990년에는 스파의 모드드어에 티어리저
(Theraz)을 만들어 디자인하였다. 또한 뉴욕의 1988년
로얄턴(Royalton)과 1990년 파라마운트(Paramount) 호텔의 인테리
어 디자인, 1991년에는 네덜란드의 그로닝겐(Groningen)
박물관
디자인하는데 주도적 역할을 하였다.

그는 일본에서도 활발한 작품활동을 꼽았다. 1989년 동경 소재
(수타마시 야주로부터 창작은) La Flanme 건물과 1990년 리코
(Riko)을 위한 아니라 무실 건물. 오사카에서 메이네리
(Meiri)로부터 창작은 초의 사무실 설계를 맡았다. 그에 의해
디자인된 작품들은 유럽과 미국의 수숙 박물관에 소장되어 있 다.
그는 현재 파리에 거주하며 작업에 중시하고 있다.

2.2. 조형정신

필립 스타크의 사고방식을 파악
하고자 할 때 그가 디자인
가는 인테리어 작품들이 적
당한 시기에 유용할 것이며
로 간주한다면 그의 조형사고
를 진행으로 이해한다고 할
수 없다.

필립 스타크는 ‘발명의 프랑스
인’ 기질과 과학기술의 대한
유연성, 관점으로 휴지적인
작업과 창조적인 실천이 드러난다. 다수의 신념을 지니고 있다. 특히 어떤 목표를 측정할 때도

3. '레몬지스퍼(Lemon Squeezer)’의 형상화 절차 분석

3.1. 시각형상의 구조 분석 방법
본 연구는 이미지의 절차를 포함한 전체 이미지의 형상화 절차를 정밀 분석하여 ‘레몬지스퍼’를 구축하고 있는 이미지의 역할과 구조와 절차를 밝히는 것이다. 여기서는 분석에 필요한 도구의 기조를 제시하고자 하며, 분석의 핵심은 그렇게 해서 기조를 구성하는 데 중점을 두어 이미지의 역할과 절차의 흐름을 언어로 시각화로 하는 것이다.

현재에 접속한 ‘이 부문을 다루려면 선생연구로서 헨드래지(Hambidge, J.) 교수가 “The Elements of Dynamic Symmetry”법을 응용하여 ‘계열체’ 분석을 시도하고, 이를 표시하는 기술은 김용영 교수가 기존의 계열체를 ‘계열체(Syntactic)’로 바꾸어 줄 필요가 있다. 여기서는 표시하는 계열체의 오류 편에 계열체의 보호자를 분석하고 기존의 계열체(Syntactic)로 해석하는 분석 절차를 할 수 있다.

2) 김박영, 같은 책, 부록 ‘시각형상 전체표 구성표’ 참조.
3) 김박영, 같은 책, 9-2 참조.

디지털에서의 본질적 채택으로는 통합에 상주한 ‘이미지(Semantic)’를 단지 채택한다. 이미지로는 그림의 구조의 결합체를 표시한다.

언어 존재하는 조형 기계를 말한다. 따라서 이 본서의 핵심은
시각형상 영역으로 그간의 개별화와 결합화를 분석하는데 있다.
이 디자인의 성격상 그만의 특성을 통해 각각의 요소들
이 어떤 현상을 통해서 어떤 의미를 갖는지 파악한다. 그 다음으
로 시각적 요소들, 특히 형태와 재배의 관계를 시각형상 전체의
매력 수용에 각 부분들의 의미를 찾아낸다.

동서부 분석에ﱯ 개체역(Paradigms) 분석과 그에 따른 개별적
(Syntagnosis) 분석이 있다. 개별체 분석은 시각형상 전체에 대하여
각각 작은 단위의 그림법이 어떠한 구도로 분별되는가에 관한 것
으로, 요령란 각 단위의 개별적인 양상을 파악하는 방법이다. 결
합체 분석이든, 시각형상의 개별체 분석에 따르 각각의 작은 단위
들이 어느 위치에 배치되는지, 시각형상 전체의 어느 위치에 큰
단위가 구성되어 있는지에 관한 것으로, 일종의 결합적인 양상을
파악하는 방법이다. 7)

동서부 분석을 통해 분석된 각 단위들이 합하여서는 의미를 파악하
g 위해서는 의미의 분석이 요구된다. 이 분석에서 중요한 포인트
는 각 단위들이 수반하고 있는 구조와 분석에 대한 분석 접근이라 할
수 있다. 특히 구조가 지속 시간 요인으로서 전체는 시각형상에
서 다양한 의미를 영위하게 될 때 의미의 분석이 결정적
인 영역을 한다. 따라서 본 연구는 '레몬즙 샐러저' 시각형상의 구조
가 지난 세대에서 명도(Value)와 채도(Chroma) 변화에 주목하며,
그것이 어떠한 양상으로 시각형상의 의미를 구축하는지를 분석
하고자 한다.

이하 말씀은 분석은 시각적 효과를 생성하는 측면에 있어 그 자체의
크고 작은 특성의 정도를 제시하는 자극값<Moment Arm;
MA=C^2/(V^2+S^2)>
의 크기에 일관한다. 특히 이 과정과 병행하
여 각 단위의 주로는 레몬즙의 차이에 따른 분석도 시행된
d 다. 이는 색채계획(Progammeme De Colours; C, C에 준거한다. 8)
세계계획을 통해서나 주조 명도의 높은(F) 중간(intermediate), 낮은(LOW) 등의 상대와 명도간에 독특(One)의 크기(contrast) 작은
(Minor) 간격 차이를 알 수 있다. 또한 이 결과들을 시각형상 전반
으로 확장시키며 비교해 보면서 각 단위들이 시각형상 전반에서 어
렇한 효과를 발생시키기까지의 확신도가 가능하다. 요령에는 중심적
이거나 주요적이거나 특정적인(Positive: +) 효과와 부수적이거나 부정적인(Negative: -)
효과 중에서도 이러한 효과로 작용하는지 파악할 수 있는 것이다.

3.2. '레몬즙 샐러저'의 시각형상 구조 분석
주요 구성품 '레몬즙 샐러저'의 시각형상을 분석해술 학적 방법으로 작
용하고자 한다. 시각형상의 형식과 주요과의 결부성을 기술하는
방법은 분석어술학적 접근이 효과적이다. 주요 공간에 놓이는 '레
몬즙 샐러저'의 시각형상도 하나나 하나로 분석해설과 구별을 하며,
주요 구조와 디자인
과정은 이러한 양식으로 미주형의 단순한 구조로 전형적이다. 이
과정은 미주형의 단순형의 사물의 존재를 의미하는 역시가 사용되고 있다.

6) Graves, M. The Art of Color and Design, McGRAW-Hill Book Company,
282-307, (1951)
이 경제는 단순한 이론적 관계를 끌어온 일련의 원소(Phoneme)의 관계를 나타내는
것에서 사용되고 있다.
8) Graves, M. The Art of Color and Design, McGRAW-Hill Book Company,
282-307, (1951)
이상으로 각 시각형상의 분질 과정을 통해 '레몬즙 짜개'에 위치한 각각의 변은 시각형상 구조를 형성하는 작은 단위로 할 수 있다. 그러한 단위들이 이러한 양상으로 되어 있는지 파악하기 위해서는 동사부 분석을 해야 한다.

동사부 분석에는 크게 '계법체(Paradigms)' 분석과 그에 따른 '결합체(Syntagma) 분석이 있다. 계법체 분석은 시각형상 전반에 각각의 작은 단위의 그립 변이 어떤 규모로 분절되는지에 관한 것으로, 요컨대 각 단위의 계법적인 양상을 파악할 수 있는 방법이다. 한편 결합체 분석은, 시각형상의 계법체 분석에 따른 각각의 단위들이 어느 위치에 배치되어 시각형상 전반의 단위로 구성하고 있는지 분석하는, 일종의 결합적인 양상을 파악하는 방법이다. 이 두가지 차원의 분석을 통해 시각형상의 기지구조를 이해할 수 있는데, '레몬즙 짜개'의 계법체 분석과 결합체 분석 과정은 다음과 같다.

1) 계법체 분석
앞서 분절된 각각의 큰 단위의(LT) 변, 중앙(ML) 변, 우(RT) 변에 대한 계법체 분석은 기본적으로 시각형상 전반에 전체 단위를 찾는다. 이러한 원리는 각각의 작은 단위 변이 시각형상 전체에 어떤 계법체로 구성되어 있는지에 관한 것이기 때문이다. 즉 시각형상의 전체를 하나의 구도 단위로 보고, 그 구성의 기초로 해서 각각 분절된 단위들의 비율을 산출한다. 결과적으로 이러한 과정을 통해 산출되는 값은 전체 단위에 대한 각 소단위들의 비율(Ratio)값이며, 이것이의 역수(Reciprocal)값 역시 이와같은 비율이 된다. 따라서 이 기본 원리에 입각해서 각 단위들의 비율값을 산출할 수 있으며, 결합체 표제(Table of Notation of Visual Shape Template Paradigms by Cambridge an Notation System) 상에서 각 그림들별의 계법체적 표현에 따른 단위 규모를 추출할 수 있다.

'레몬즙 짜개'는 어려운 영상의 조형요소들이 존재하고, 그들간에는 어떤 관계가 차이가 있는지를 파악하려면 시각형상의 계법체을 형성하는 각 단위 변을 분석해야 한다. 따라서 우선 기본 문이 되는 큰 시각형상을 상정하고, 그 중 나온 부분의 각각에 정해진 약호에 따라 Left, Middle, Right로 의미하는 LT, ML, RT를 표기 한다. 이렇게 분절된 크고 작은 시형들의 패러다임(Paradigm, PAR)을 알아보면서 우선 면적을 구하고나서 그 비율을 랜바지의 표제체(Hambidge an Notation System)에 맞춘다. 기본적인 계산방식은 앞의 변의 길이를 갯변의 길이로 나눈 것이다.

다음은 AA를 구성하는 AALT, AAML, AART의 패러다임을 구한다. AALT는 3.75를 8로 나눈 값 0.4375가 0.4351에 가까우므로 AALT의 패러다임은 [25][11][13]이 되고, 같은 방식으로 AAML은 4.5MF 8로 나눈 값 0.5625이 0.5773에 가까우므로 패러다임은 [5][2][11]이다. AART는 3.75를 8로 나눈 값이므로 패러다임은 [25][11][13]이다.

다음은 AB를 구성하는 ABLT, ABMLLT, ABML, ABMLRT, ABRT를 구한다. ABLT는 1.75를 6로 나눈 값 0.2917이 0.2918에 가까우므로 ABLT의 패러다임은 [40][34][16]이다. ABMLLT는 2.5를 6으로 나눈 값 0.4166이 0.4142에 가까우므로 패러다임은 [60][34][16]이다. ABML은 3.5를 6으로 나눈 값 0.5833이 0.5802에 가까우므로 패러다임은 [5][3][11][13]이다. ABMLLT는 2.5를 6으로 나눈 값 0.4166이 0.4142에 가까우므로 패러다임은 [60][34][16]이고, 마찬가지로 ABMLRT도 2.5를 6으로 나눈 값이므로 패러다임은 [5][3][11][13]이다. ABRT는 1.75를 6으로 나눈 값이므로 패러다임은 [40][34][16]이다.

다음은 B를 구성하는 BLT, BML, BRM에 대한 각각의 패러다임을 구한다. BLT는 2.5를 15로 나눈 값 0.1708이므로 BLT의 패러다임은 [30][44][38]이다. BML은 6.5를 15로 나눈 값 0.4407이므로 패러다임은 [25][30][44][38]이고, BRT는 2.5를 15로 나눈 값 0.1708이므로 패러다임은 [30][44][38]이다.

2) 결합체 분석
다음은 [도표3] 수형도(함께표)에서 시형의 패러다임별 부분 집합과 병행해서 기술한 바 산타그라(Syntagma, SYN)를 구한다. 산타그라는 시형의 위치를 정의주는 규칙으로서 수치를 기입해야 한다. 즉 시형들의 결정점이 X축과 Y축의 어느 차점을 위치하는 가를 계산하여 산타그라 프로포(Syntagma Orbit)9에서 찾아 해당 번호를 표기하는 것이다.

우리가 보통 디자인을 할 때 주로 앞에서부터 가장 먼저 그러는 이미지의 위치가 있고, 그것을 기준으로 여러 이미지를 채 워날다 보면 결국 외부로 성형 결합체가 된다. 그 결합체를 시각적 언어로 풀어내기 위해서는 산타그라 움도가 필요하다. 산타그라 움도를 도입한다. 이것은 시형 상에 어떠한 수직 규칙이 있음을 인정하고, 그 속에 담긴 이미지를 계획적인 채대로 수치화함을 의미한다.

'때문 공lua가'의 경우, 가로 X축 상에서 서로 다른 위치에 있는 AALT, AAML, AART, ABLT, ABML, ABMLT, ABMLRT, BLT, BML, BRT의 산타그라 X값들을 구하고, 마찬가지로 세로 Y축 상에서 서로 다른 위치에 있는 A, AA, AB, B의 산타그라 Y값들을 구한다. 계산방식은 패러다임을 구하는 것과 마찬가지로 같은 번의 길이를 긴 번의 길이로 냈다.

우선 X축 상에서 AALT의 가로 전체 길이 12에서 4.75를 차지하므로 4.75나누기 12하여 0.3958의 값을 가진다. 같은 방식으로 AAML은 4.5 나누기 12하여 0.375의 값을 가지고, AART는 4.75 나누기 12하여 0.3958의 값을 가진다. ABLT는 1.75 나누기 12하여 0.1458의 값을 가지고, ABMLT는 0.85 나누기 12하여 0.07039의 값을 가지고, ABMLRTT는 4.25 나누기 8.5로 하여 0.5의 값을 가진다. ABRT는 1.75 나누기 12하여 0.1425의 값을 가지고, BML은 2.55 나누기 12하여 0.2125의 값을 가지고, BRT는 2.55 나누기 12하여 0.2125의 값을 가진다. 그렇다면 위의 11개의 값, 즉 0.3958, 0.375, 0.1458, 0.07039, 0.05, 0.05, 0.2125, 0.2125, 0.375, 0.2125를 산타그라 움도에서 각각 찾으면 상수 C는 2.8571이고, Q는 1.2627인 움도에서 각각 차례로 7, 7, 7, 6, 4, 1, 1, 0, 5, 10, 5에 해당되는 수에 가깝다는 것을 알 수 있다.

다음은 Y축 상에 있는 A는 서로 전체 길이 29에서 14를 차
으로 AA는 8 나무기 14를 하여 0.5714의 값을 가진다. AB는 6 나무기 14를 하여 0.4286의 값을 갖으며, B은 15 나무기 29를 하여 0.5712의 값을 가진다. 여기 A, AA, AB, B부부에 해당되는 4 개의 값을 모두 수치로 기술한 것은 여기에 하나의 신규가 아마도 출처에서 찾아보는 것이다. 그렇기에 해서 수식 C는 2.8571의 Q² 1.2627인 측정에서 각각 차례로 0, 10, 0, 0에 해당되는 수에 가깝다는 것을 알 수 있다.

(2) 의미부 분석

지금까지 '레몬즙 짜게' 시각형상 구조의 통사부 분석을 통해 헤리디움과 신테그마 알레이로, 그에 따른 수평도 거쳐 광학기 술을 시도해 보았다. 이제는 복잡한 각 부분들의 형상과 색채계획을 분석하여 그것이 지니고 있는 공시구조(Connotative) 의미를 파악하려고 보자 한다.

색상(V), 명도(V), 제도(C)의 합은 색채원리에 의거, H/V/C 속성의 합에 따라서 수치가 높으면 우리 눈에 덜시한 주목성이 큰 것 으로 식별이 가능하다. 이러한 모습에서 우리 눈에 읽히는 모든 시각형상의 색채 구조는 반해야 한다. 그러나 식 3상 구조를 가진 색채 처리 모델이 필요하다. 이 모델은 시각적인 효과를 생성하는 색채에 있어 그 자극의 크고 적절한 정도를 제시하는 자극값 Moment Arm MA = [C·(2+V·V+V)]²의 원리에 입각 해서 활용한다. 특히 이 과정을 병행하여 각 단위별 주조를 이루는 명도 차이에 따라 분석도 시행된다. 이는 <정색계획>(Programme de Couleur; P^c)에 준거한다. 색채계획을 통해서 만 주조 명도의 높고(High), 중간(Intemmediate), 낮은(Low) 상태 와, 그 명도간에 크고(Major) 작은(Minor) 간격의 차이를 알 수 있다. 이러한 원리를 시각형상 전면으로 확장시키며 단위 면들이 어떠한 효과를 발생시키는지 확인도 가능하다. MA는 골 수록, 높은수록 Major 된다.

'레몬즙 짜게'의 경우, 본문의 각 부분들은 AART, AAML, AART, ABBLT, AART, ABBLT, AAML, ABMLT, ABMLT, ABMLT, BLT, BMT, BRT로 되어, AART, AAML, ABMLT는 백 칠판으로 이들 복합화 AAML, ABMLT, ABMLT, BLT, BRT 부분을 연결하고자 한다.

1) AAML
이 부분은 물체 상단부인데, 어깨 끼여찰 물방울 형상을 하고 있고, 색상은 회색, 명도는 8.0, 제도는 0, MA는 8.5이고 Major 된다.

2) ABMLT
이 부분은 물체 하단부인데, 어깨 끼여찰 물방울 형상을 하고 있고, 색상은 회색, 명도는 7.6, 제도는 0이며 MA는 8.3이다. Major 톤에 해당한다.

3) ABMLT
이 부분은 좌측 대리 상단부인데, 색상은 회색, 명도는 7.6, 제도는 0, MA는 7.9이고 Major 된다.

4) ABMLT
이 부분은 우측 대리 상단부인데, 색상은 회색, 명도는 7.0, 제도는 0, MA는 7.9이고 Major 된다.

5) BLT
이 부분은 좌측 대리 하단부인데, 색상은 회색, 명도는 7.6, 제도는 0, MA는 7.9이고 Major 된다.

6) BRT
이 부분은 우측 대리 하단부인데, 색상은 회색, 명도는 7.5, 제도는 0, MA는 7.1이고 Major 된다.

7) BML
이 부분은 중간에 위치한 대리 부분인데, 색상은 회색, 명도는 6.0, 제도는 0, MA는 6.1이고 Intermediate 된다.

4. 필립 스타크의 1990년 '레몬즙 짜게(Lemon Juice Squeezer)'에 대한 시각형상 기술

필립 스타크(Philippe Starck)는 프랑스 출신의 건축가이자 인더스 트리아니즘 디자이너이다. 그의 디자인은 '작은 시각으로부터 선한 출 발로 빚어낸 오브제에 관한 사람들들의 관심을 중추시킨다. 그러 나 그는 최소한의 재료로 가능한 이에 자연에 대한 합의하는 경로를 지니고 있다. 그래서인지 그의 색상은 항상 온난하다. 그럼에도 불구하고 갑작스러운 확실한 발생이 따르는 것 아니 확실한 것끼리 바라는 그의 열망은 혼돈스러운 생각의 배를 뛰어넘을 수 있기에 때문이었다.

그가 이레아리(ALESSI)사의 파트너로 일어난 1988년에 디자인을 시 작하여 1995년에 세상에 선보인 '레몬즙 짜게'는 그의 계획적 발 생각이 잘 반영된 대표작이다. 이래리아로 'Juicy Salif'으로 불리 는 '레몬즙 짜게'는 그 물체 상단에 레몬을 깔았다고 손으로 몰아 빼면 레몬즙 물체의 홈과 모서리를 흘러 흘러 내려겨슴 되어 있다. 그 상 황을 사용자는 물론 보는 이들로는 호평한을 못한다.

특정적인 것은 그 물체가 어깨로 톱장한 이미지를 주고, 그것을 반자는 3개의 대리로 위에 반영하는 이미지를 둔다는 점이다. '상 승'과 '하강'의 상반된 이미지가 하나의 시각형상으로 결합되어 있다.

알루미늄 주조물로 만들어진 이 제품은 예비 대리에선한 형태 이미 빛은 값전의 사례적한 감각의 심신적 인상을 준다. 또한 오래 사용해도 녹지 않은 인체에 무해하다. 제품의 높이는 29cm로 대부분의 집에서 허리에 견고게 적절하였다. 그것보다 더 큰 것으로 둘러 둔 레몬즙을 바라며 하진 않을 것이다.

이제는 필립 스타크가 자신의 계기적 발상을 '레몬즙 짜게'에 어떻게 반영하고 있는지 언급해 보겠다. 말하자면 그의 레몬즙 짜게에 와하면 계획적 기술, 과학기술에 대한 다크 그리고 핵심적인 것을 성 중 내려는 제작 경로에 관해 알아보고자 한다.

먼저, 계획을 위한 준비과정이다. 이 과정에서 그는 가장 먼저 상 장적인 형상을 생각했다. 필립 스타크는 생각하는 상설장 형상이 일상적으로 누워있는 색상이 아니려, 상이있는 듯한, 단러 실제 형상이 있는 형상을 의심시키고 특별히 3개의 대리로 견고히 세울 수 있어 사용자와 대화가 가능한 기능적인 오브제를 만들고
실험 음향의 이어들기 실험과 이어들기 실험을 비교한 것과 능력 비교 실험을 조정한 것에 있어 음향의 이어들기 실험을 실험하기 위해 실험을 조정한 것과 능력 비교 실험을 실험하기 위해 실험을 조정한 것으로 나타난다. 실험을 조정한 것과 능력 비교 실험을 실험하기 위해 실험을 조정한 것으로 나타난다.

5. 결론

본 논문은 실험의 사례적 표현이 어떻게 체계화되는지를 발휘하기 위해 주요사례에 대한 사례형제 관계 분석과 기술에 관해 논의한 것이다. 사례 표현이라고 한다가 관계의 표현도 분석을 하고자 하지 않고서는 답을 알 수 없는 전제하에, 주요사례 중에서 실험 스타일로 ALESSI 사례에 대해 다자인한 ‘레몬즙 카페(Lemon Juice Squeezers)’의 하나의 대표적인 사례로 삼아 사례형제의 구조와 설명서를 수리모델을 통해 밝히고 형성과 과정을 기술하였다.

본 연구를 통해 드러난 것은 레몬즙 카페에 담긴 개개의 구

점은 하나하나의 별도로 명시하고, 이러한 여러 점들을 물리

적 의미를 이룬다. 이것이 더 큰 집합의 ‘계열관련’을 보여

주는 둘, 이를 ‘계열관련의 장(field of paradigmatic relations)’이라

한다. 그리고 사례형제에서의 주요자는 순서와 위치가 정해져 있

는데, 이러한 점을 ‘계열관련계’(syntagmatic relationship)라고 한

다. 따라서 사례형제의 분석에서 계열관련계와 결합관련계를 구분하는

것이 중요하고, 그 관계를 데이터 분석의 톤으로 활용하는 것이다.

결론 본 연구는 향후 과학과 제품과의 관계, 제품과 사용자와의 관계, 오브제 자체의 조합 법칙 등을 다루어 있는 자료 추출이 상

조하고 강성적으로 흐르는 것이며, 그 대안으로 ‘레몬즙 카페’

(Lemon Juice Squeezers)의 사례형제 구조와 설명서를 수리적으

로 발에 가깝다고 할 수 있고, 정밀화와 단축된 점에서 실질적으

로 양 기능을 실현한 것에 의하여 독단적 병행 방법을 제시하였다는 점에 의의를 둔다.

참고문헌

2. 크리 오현, 조수진: 알레고리적 충동 - 포스트모더니즘의

이론을 향하여, 모디파이 이후 미술의 화두, 논평, (1999)
3. Moos, S.V., 최명길-임영재: 르 고로르지에의 생애, 기문

당, 294, (1997)
6. 김복명: 희화적 표상에 있어서 기호와 형의 결합 가능성,

승무대박사논문, (1987)
7. ALESSI: Dream Design Factory, Italy Alessi, (2001)

Introduction a la semiotique narrative et discoursive,

Book Company, 282-307, (1951)
11. Hamblidge, J: The Element Dynamic Symmetry, The

Greek Vase, New Haven, Yale University Press, 71-72,
(1920)

<필름 자료>
1) 시형(영화), Visual Shape Template
 S 1, √1 S √3
 O √2 M √4
 W 0 N √5

2) 구조기술 (CD: 이 약호는 김복명, '문서형식학의 기초'의 논문 p1과
 시험인쇄의 구조과 기술에 p2의 약호를 그대로 준용하였음)
 VT Visual Text. 텍스트로 제작된 시험인쇄
 VST 시형(영화). 특정 시형상(Visual Image)을 올정의해주는 형
 편(문자)
 S String of VST&Visual Image(VT내의 시형 및 시형상 안내)
 PAR Paradigm(패리다임). 시형의 관행(행동) 변화
 SYN Syntax(구세그미). 시형의 위치를 정의해주는 규칙
 Qc(x) Qc(x). 2차함수(Quadratic function) X축의 좌(family)
 Comp...Complement. 1-Selected Paradigm. 앞서 선택한 패리다임과
 전체 (4)에다 변 캐인 형환, 또는 환경들의 관계
 A Above. 위배치 B Below. 아래배치
 RT Right. 오른쪽배치 LT Left. 왼쪽배치
 ML Middle. 중간 배치

3) 신세그미 편도표 (Syntagma Orbit)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>15/29</td>
<td>0.5172</td>
<td>1</td>
</tr>
<tr>
<td>BLT</td>
<td>2.55/12</td>
<td>0.2125</td>
<td>5</td>
</tr>
<tr>
<td>BML</td>
<td>6.9/12</td>
<td>0.575</td>
<td>10</td>
</tr>
<tr>
<td>BRT</td>
<td>2.55/12</td>
<td>0.2125</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14/29</td>
<td>0.4827</td>
<td>0</td>
</tr>
<tr>
<td>AA</td>
<td>8/14</td>
<td>0.5714</td>
<td>10</td>
</tr>
<tr>
<td>AALT</td>
<td>4.75/12</td>
<td>0.3958</td>
<td>7</td>
</tr>
<tr>
<td>AAML</td>
<td>4.5/12</td>
<td>0.375</td>
<td>7</td>
</tr>
<tr>
<td>AART</td>
<td>4.75/12</td>
<td>0.3958</td>
<td>7</td>
</tr>
<tr>
<td>AB</td>
<td>6/14</td>
<td>0.4285</td>
<td>0</td>
</tr>
<tr>
<td>ABLT</td>
<td>1.75/12</td>
<td>0.1458</td>
<td>6</td>
</tr>
<tr>
<td>ABML</td>
<td>8.5/12</td>
<td>0.7083</td>
<td>4</td>
</tr>
<tr>
<td>ABMLT</td>
<td>4.25/8.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>ABMLRT</td>
<td>4.25/8.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>ABRT</td>
<td>1.75/12</td>
<td>0.4285</td>
<td>0</td>
</tr>
</tbody>
</table>

C=2.8571 Q=1.2627 SYNXn=10편도

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4420</td>
</tr>
<tr>
<td>1</td>
<td>0.5580</td>
</tr>
<tr>
<td>2</td>
<td>0.7045</td>
</tr>
<tr>
<td>3</td>
<td>0.8897</td>
</tr>
<tr>
<td>4</td>
<td>0.7511</td>
</tr>
<tr>
<td>5</td>
<td>0.2367</td>
</tr>
<tr>
<td>6</td>
<td>0.1683</td>
</tr>
<tr>
<td>7</td>
<td>0.3670</td>
</tr>
<tr>
<td>8</td>
<td>0.8720</td>
</tr>
<tr>
<td>9</td>
<td>1.5769</td>
</tr>
<tr>
<td>10</td>
<td>0.5766</td>
</tr>
</tbody>
</table>

4) 레몬즙 짜개(Lemon Juice Squeezer)의 MA・P(c) 표