Preparation of Surface-anionized Poly(vinyl alcohol-co-methacrylic acid) Hydrogel Beads

표면에 음이온이 도입된 폴리(비닐 알코올-co-메타아크릴산) 하이드로젤 입자의 제조

  • 윤주표 (성균관대학교 유기소재공학과) ;
  • 박연흠 (성균관대학교 유기소재공학과) ;
  • 이세근 (서울대학교 재료공학부) ;
  • 박기홍 (한국과학기술연구원 정보재료소자연구센터) ;
  • 이철주 (한국과학기술연구원 정보재료소자연구센터)
  • Published : 2003.03.01

Abstract

For the purpose of obtaining surface-anionized poly(vinyl alcohol) (PVA) hydrogel beads, vinyl acetate(VAc) and methacrylic acid(MMA) were copolymerized by the suspension polymerization technique and followed by the saponification. It was confirmed by $^1$H-NMR that the copolymerized microspheres contained carboxylic acid groups in their surface. poly(VAc-co-MAA) microspheres were completely saponified in the heterogeneous system. The saponification reaction was laster than that of PVAc microspheres. We observed the swelling property of saponified PVA microspheres treated in the acidic solution and in the alkaline solution successively. Saponified microspheres shrank in acidic solution and swelled in alkaline solution respectively, which was reversible. from the result, saponified microspheres were highly water-absorbing hydrogel beads and were certified -COOH group at their surface by $^1$H-NMR and FT-IR.

폴리(비닐 알코올) 하이드로젤 입자의 표면에 음이온성을 부여하기 위하여 비닐아세테이트(VAc)와 메타아크릴산(MMA)을 현탁 공중합하였다. $^1$H-NMR을 통해서 공중합된 입자의 표면에 카르복실기가 도입되었음을 확인하였다. poly(VAc-co-MAA) 입자를 알칼리 용액에서 불균일계 비누화를 하였으며, 단독 PVAc 입자 보다 비누화 반응이 빠름을 관찰하였다. 또한 이들 입자를 산성 용액과 알칼리 용액에서 연속적으로 처리하여 입자들의 팽창 정도를 관찰하였다. 비누화된 입자들은 산성 수용액에서는 수축이 되었다가 알칼리 수용액에서는 팽창하는 가역적인 성질을 보였다. 비누화된 입자들은 다량의 수분을 흡수하는 하이드로젤 형태였으며, $^1$H-NMR, FT-IR을 통해서 하이드로젤 표면에 -COOH기가 형성된 것을 확인할 수 있었다.

Keywords

References

  1. Nature v.185 O. Wichterle;D. Lim https://doi.org/10.1038/185117a0
  2. Polyelectrolyte Gels R. S. Harland(Editors);R. K. Purd'homme(Editors)
  3. Biodegradable Hydrogels for Duurg Delivery K. Park(Ed.);W. S. W. Shalaby(Ed.);H. Park(Ed.)
  4. Proceedings of the First International Conference on Intelligent Materials T. Takagi;K. Takahashi;M. Aizawa;S. Miyata
  5. Hydrogels in Medicine and Pharmacy v.1~3 N. A. Peppas(Editor)
  6. J. Appl. Polym. Sci. v.46 C. Kim;P. Lee https://doi.org/10.1002/app.1992.070461211
  7. Neuoradiol v.36 A. Kinoshita;K. Yamada;M. Ito;M. Yamazaki;M. Taneda;T. Hayakawa https://doi.org/10.1007/BF00599201
  8. J. Appl. Polym. Sci. v.61 R. H. Chen;H.-D. Hua https://doi.org/10.1002/(SICI)1097-4628(19960801)61:5<749::AID-APP5>3.0.CO;2-O
  9. Acta Mater v.48 L. G. Griffith https://doi.org/10.1016/S1359-6454(99)00299-2
  10. Science and Technology F. L. Buchholz;N. A. Peppas
  11. Makromol. Chem. v.51 K. Fujii;S. Imoto;T. Ukida;M. Matsumoto https://doi.org/10.1002/macp.1962.020510123
  12. Kobunshi Kagaku v.26 I. Sakurada;Y. Kishi;Y. Sakagchi https://doi.org/10.1295/koron1944.26.801
  13. Biomaterials v.19 D. Campoccia;P. Doherty;M. Radice;P. Brum;G. Abatangelo;D. F. Williams https://doi.org/10.1016/S0142-9612(98)00042-8
  14. Polymer v.37 S. Kurihara;S. Sakamaki;S. Mogi;T. Ogata;T. Nonaka https://doi.org/10.1016/0032-3861(96)80838-X
  15. High Polymer Series in Copolymerization v.8 T. Alfrey, Jr.;J. Bohrer;H. Mark
  16. Kobunshi Kagaku v.2 I. Sakurada;N. Fujikawa https://doi.org/10.1295/koron1944.2.143
  17. Kobunshi Kagaku v.8 I. Sakurada;K. Kawashima https://doi.org/10.1295/koron1944.8.74_142
  18. U. S. Patent 3,654,257 J. E. Bristol
  19. U. S. Patent 3,689,469 H. K. Inskip;R. L. Adelman
  20. Polymer v.35 F. B. McKenna;F. Horkay https://doi.org/10.1016/S0032-3861(05)80049-7
  21. Polymer v.38 T. Moritano;K. Kajitani https://doi.org/10.1016/S0032-3861(96)00825-7
  22. Polym. Degrad. Stab. v.47 I. C. McNeill;S. Ahmed;L. Memetea https://doi.org/10.1016/0141-3910(95)00001-1