Synthesis of Poly(vinyl pivalate) Telomer Through Telomerization of Vinyl Pivalate

피발산 비닐의 텔로머화반응을 이용한 폴리(피발산 비닐) 텔로머 합성

  • 김도균 (기능성고분자 신소재연구센터, 한양대학교 섬유고분자공학과) ;
  • 조창기 (기능성고분자 신소재연구센터, 한양대학교 섬유고분자공학과)
  • Published : 2003.01.01

Abstract

Poly(vinyl pivalate)(PVPi) telomer containing bifunctional end groups was synthesized through radical telomerization of vinyl pivalate. The number-average molecular weight ($\bar{M}$n) of the synthesized telomers was investigated by GPC, $^1$H-NMR, and viscometric methods. PVPi telomers having a number-average molecular weight ($\bar{M}$n) of 2400~1300 g/mol were obtained. In order to control the molecular weight of telomers, chain transfer constants ($C_s$) of telogen ($CCl_4$) were determined by using the Mayo equation and simulation, which were 1.15, 1.16, and 1.18 at 40, 50, and 6$0^{\circ}C$, respectively. $\bar{M}$n of the synthesized telomers at 6$0^{\circ}C$ were between 5100 and 5400 g/mol at conversion of increasing from 18 to 72%. Those are corresponding to simulation results.

피발산 비닐의 라디칼 텔로머화반응을 통하여 양 말단에 관능기를 포함한 폴리(피발산 비닐) 텔로머를 합성하였다. 합성된 텔로머의 수평균분자량 ($\bar{M}$n)은 GPC, $^1$H-NMR, 점도법 세가지로 각각 고찰하였고, 그 값은 2400~13000 g/mol 이었다. 또한, 텔로머의 분자량을 정밀제어하기 위하여 VPi에 대한 텔로겐($CCl_4$)의 연쇄이동상수값($C_s$)을 Mayo식 및 시뮬레이션에 의해 결정하였는데, $C_s$은 40, 50, 60 $^{\circ}C$에서 각각 1.15, 1.16, 1.18 이었다. 합성된 텔로머는 전환율 18~72%에서 $\bar{M}$n은 5100~5400 g/mol 사이의 값을 보였고, 이는 시뮬레이션 결과와 일치하였다.

Keywords

References

  1. Polyvinyl Alcohol Properties and Application K. Toyshima;C. A. Finch(ed.)
  2. Polymer v.33 K. Nakmae;Y. Nishino;H. OhKubo;S. Matsuzawa;K. Yamaura https://doi.org/10.1016/0032-3861(92)91141-N
  3. Polym. Eng. SCi. v.37 W. S. Lyoo;W. S. Ha;B. C. Kim https://doi.org/10.1002/pen.11770
  4. Polyvinyl Alcohol Fibers I. Sakurada;M. Lewin(ed.)
  5. Encyclopedia of Polymer Science and Engineering F. L. Marten;H. F. Mark(ed.);N. M. Bikales(ed.);C. G. Menges(ed.);J. I. Karoschwitz(ed.)
  6. Polyvinyl Alcohol-Developments M. Masuda;C. A. Finch(ed.)
  7. Polymer v.37 W. S. Lyoo;W. S. Ha https://doi.org/10.1016/0032-3861(96)89414-6
  8. Vinyl Acetal Polymer v.17 T. P. Blomstrom;H. F. Mark(ed.);N. M. Bikals(ed.);C. G. Overberger(ed.);G. Menges(ed.)
  9. J. Controlled Release v.5 P. L. Ritger;A. N. Peppas https://doi.org/10.1016/0168-3659(87)90034-4
  10. J. Appl. Polym. Sci. v.58 S. Horiike;S. Matsuzawa https://doi.org/10.1002/app.1995.070580815
  11. J. Polym. Sci. v.22 H. C. Haas;E. S. Emerson;N. W. Schuler https://doi.org/10.1002/pol.1956.1202210111
  12. Macromol. Chem. Phys. v.200 J. H. Choi;W. S. Lyoo;S. W. Ko https://doi.org/10.1002/(SICI)1521-3935(19990601)200:6<1421::AID-MACP1421>3.0.CO;2-O
  13. Macromolecules v.34 J. H. Choi;S. W. Ko;B. C. Kim;J. Blackwell;W. S. Lyoo https://doi.org/10.1021/ma001710s
  14. Polymer v.33 S. R. Stauffer;N. A. Peppsa https://doi.org/10.1016/0032-3861(92)90385-A
  15. J. Polym. Sci. Polym. Chem. Ed. v.11 S. Nozakura;M. Sumi;M. Uoi;T. Okamoto;S. Murahashi https://doi.org/10.1002/pol.1973.170110124
  16. Polym. J. v.27 R. Fukae;K. Kawakami;T. Yamamoto;O. Sangen;T. Kato;M. Kamachi https://doi.org/10.1295/polymj.27.1257
  17. Polym. J. v.29 R. Fukae;T. Yamamoto;Y. Fujita;N. Kawatsuki;O. Sangen;M. Kamachi https://doi.org/10.1295/polymj.29.293
  18. J. Polym. Sci. Polym. Chem. Ed. v.35 W. S. Lyoo;W. S. Ha https://doi.org/10.1002/(SICI)1099-0518(19970115)35:1<55::AID-POLA7>3.0.CO;2-1
  19. Interoduction to Physical Polymer Science, (3rd Ed.) L. H. Sperling
  20. J. Polym. Sci. Part A: Polym. Chem. v.38 B. Boutevin https://doi.org/10.1002/1099-0518(20000915)38:18<3235::AID-POLA20>3.0.CO;2-6
  21. Principles of Polymerization, (3rd Ed.) G. Odian
  22. Makromol. Chem v.69 H. Hopff;J. Dohany https://doi.org/10.1002/macp.1963.020690110
  23. Eur. Polym. J. v.31 T. Sato;M. seno;M. Kobayashi;T. Kohno;H. Tanaka https://doi.org/10.1016/0014-3057(94)00155-3