해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성

Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter

  • 현정호 (한국해양연구원 미생물 연구실) ;
  • 이홍금 (한국해양연구원 미생물 연구실) ;
  • 권개경 (한국해양연구원 미생물 연구실)
  • 발행 : 2003.05.01

초록

황산염 환원은 혐기성 해양환경에서 황산염 환원 박테리아가 진행시키는 미생물 반응이다. 황산염 환원 반응은 저층으로 공급되는 유기물 분해의 상당 부분을 담당하며, 이때 발생되는 황화가스의 독성 및 주변 금속과의 높은 반응성, 그리고 유기물 분해시 유리되는 무기 영양염들의 수층 용출 등으로 인해 연안생태계 내의 생물 다양성 및 생지화학적 물질의 순환경로에서 중요한 역할을 한다 여러 해양환경의 퇴적토에서 보고 된 황산염 환원율과 이에 영향을 미치는 주요한 환경요인들에 대해 정리한 결과, 공급되는 유기물과 여러 전자수용체들(산소, 질산염, 산화 철, 망간 등)의 분포가 황산염 환원율 및 유기물 분해시 황산염 환원의 상대적 중요성에 직접 영향을 미치는 것으로 나타났다 아울러 전자수용체의 분포와 유기물의 양과 질을 조절하는 요인으로서 온도, 식생의 유무, 생물교란의 영향에 대해 토의하였다. 끝으로, 우리나라와 같이 갯벌이 발달되고, 유기물 부하가 높은 인공양식장의 가동, 부영양화 등으로 인해 혐기성 환경과 적조의 발생빈도가 점증하는 상황에서 유기(오염)물 분해과정과 영양염 순환 경로를 보다 잘 이해하기 위해서 황산염 환원을 중심으로 한 다양한 혐기성 미생물 생태연구가 중요함을 제안한다.

Sulfate reduction is a microbiological process which occurs ubiquitously in anaerobic marine environment. Sulfate reducing bacteria play a significant role in anaerobic decomposition of organic matter and regeneration of inorganic nutrients which supports the primary production in the water column (i.e., benthic-pelagic coupling) and, in special case, could be responsible for the harmful algal bloom in the coastal marine environment. Summary of the sulfate reduction rates reported in various marine sedimentary environments revealed that supply of organic substrates and presence of various electron acceptors (i.e., $O_2$, NO$_{3}$$^{[-10]}$ , Fe(III) and Mn(IV), etc.) for other aerobic and anaerobic respiration directly affect the sulfate reduction rate and relative significance of sulfate reduction in organic matter mineralization. Significance of temperature, macrophytes and bioturbation is discussed as factors controlling supply of organic substrates and distribution of electron acceptors. Finally, we suggest studies on the anaerobic microbiological processes associated with biogeochemical element cycles in the coastal environments of Korea where massive operation of organic enriched fish cage farm, frequent occurrence of toxic algal bloom and hypoxia and conservation of tidal flat are of major environmental issues.

키워드

참고문헌

  1. Deep-Sea Res. v.42 Sulfate reduction rates and low molecular weight fatty acid concentrations in the water column and surficial dediments of the Black Sea. Albert, D.B.;C. Taylor;C.S. Martens https://doi.org/10.1016/0967-0637(95)00042-5
  2. J. Mar. Res. v.41 Comparative biogeochemistry of water in intertidal Onuphis (Polychaeta) and Upogebia (Crustacea) burrows: temporal patterns and causes. Aller, R.C.;J.Y. Yingst;W.J. Ullman https://doi.org/10.1357/002224083788519722
  3. Nitrogen cycling in coastal marine environments Benthic fauna and biogeochemical processes in marine sedimints: the role of burrow structures. Aller, R.C.;Blackburn, T.H.(ed);J. Sorensen(ed)
  4. J. Mar. Res. v.46 Microbial-meiofaunal interrelationships in some tropical intertidal sediments. Alongi, D.M. https://doi.org/10.1357/002224088785113630
  5. Coastal Ecosystem Processes Alongi, D.M.
  6. J. Exp. Mar. Biol. Ecol. v.225 The influence of stand age on binthic decomposition and recydling of organic matter in managed mangrove forests of Malaysia. Alongi, D.M.;A. Sasekumar;F. Tirindi;P. Dixon https://doi.org/10.1016/S0022-0981(97)00223-2
  7. Mar. Geol. v.179 Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern thailand. Alongi, D.M.;G. Wattayakorn;J. Pfitzner;F. Tirendi;I. Zagorskis;G.J. Brunskill;A. Davidson;B.F. Clough https://doi.org/10.1016/S0025-3227(01)00195-5
  8. Limnol. Oceanogr. v.37 The impertance of benthic macrofauna in decomposition of microalgae in a coastal marine sediment. Andersen, F.O.;E. Kristensen https://doi.org/10.4319/lo.1992.37.7.1392
  9. Geomicrobiol. J. v.15 Study of biofilms of sulfidogens from North Sea oil production facilities using continuous-flow apparatus. Bass, C.;P. Sanders;H. Lappin-Scott https://doi.org/10.1080/01490459809378068
  10. Productivity of the ocean; present and past Ocean productivity and paleoproductivity-an overview. Berger, W.H.;V.S. Smetacet;G. Wefer;W.H.(ed); V.S. Smetacet(ed);G. Wefer(ed)
  11. Arch. Microbiol. v.121 The effects of temperature on the fatty acid and phospholipid composition of four obligately psychrophilic Vibrio spp. Bhakoo, M.;R.A. Herbert https://doi.org/10.1007/BF00689975
  12. Nitrogen cycling in coastal marine environments Modelling benthic nitrogen cycling in temperate coastal ecosystems. Billen, G.;C. Lancelot;Blackburn, T.H.(ed);J. Sorensen(ed)
  13. Aquat. Microb. Ecol. v.15 Diel cycles of sulphate redudtion rates in sediments of a Zostera marina bed(Dinmark). Blaabjerg, V.;K.N. Mouritsen;K. Finster https://doi.org/10.3354/ame015097
  14. Mar. Ecol. Prog. Ser. v.44 C- and N-miner-alization in the sedimints of earthen marine fishponds. Blackburn, T.H.;B.A. Lund;M. Krom https://doi.org/10.3354/meps044221
  15. Mar. Ecol. Prog. Ser. v.23 Nutrient regeneration and oxygen consumption by sedimints along an estuarine salinity gradient. Boynton, W.R.;W.M. Kemp https://doi.org/10.3354/meps023045
  16. J. Exp. Mar. Biol. Ecol. v.109 The effect of salmon on the benthos of a Scottish sea loch. Brown, J.R.;R.J. Gowen;D.S. McLusky https://doi.org/10.1016/0022-0981(87)90184-5
  17. Estuar. Coast. Shelf Sci. v.19 Deoxygenation and renineralization above the sediment-water interface; an in situ experimental study. Bulleid, N.C. https://doi.org/10.1016/0272-7714(84)90050-7
  18. Science v.251 Aerobic sulfate reduction in microbial mats. Canfield, D.E.;D.J. Des Marais https://doi.org/10.1126/science.11538266
  19. Interactions of C, N, P and S biogeochemical cysles and global change Organic matter oxidation in marine sediments. Canfield, D.E.;Wollast, R.(ed);F.T. Mackenzie(ed);L. Chou(ed)
  20. Chem. Geol. v.114 Factors influencing organic carbon preservation in marine sedimints. Canfield, D.E. https://doi.org/10.1016/0009-2541(94)90061-2
  21. Chem. Geol. v.54 The use of chromium reduction in the analysis of riduced inorganic sulfur in sedimints and shales. Canfield, D.E.;R. Raiswell;J.T. Westrich;C.M. Reaves;R.A. Berner https://doi.org/10.1016/0009-2541(86)90078-1
  22. Geochim. Cosmochin Acta v.57 The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Canfield, D.E.;B. Thamdrup;J.W. Hansen https://doi.org/10.1016/0016-7037(93)90340-3
  23. Mar. Geol. v.113 Pathways of roganic carbon oxidation in three continental margin sediments. Canfield, D.E.;B.B. Jorgensen;H. Fossing;R. Glud;J. Gundersen;N.B. Ramsing;B. Thamdrup;J.W. Hamsen;L.P. Nielsen;P.O.J. Hall https://doi.org/10.1016/0025-3227(93)90147-N
  24. Geochim. Cosmochim. Acta v.60 Reactivity of recently deposited organic matter. degradation of lipid compunds mear the sediment-water interface. Canuel, E.A.;C.S. Martens https://doi.org/10.1016/0016-7037(96)00045-2
  25. Limnol. Oceanogr. v.33 Comparison of microbial dynamics in marine and freshwater sediment: Contrasts in anaerobic carbon catabolism. Capone, D.G.;R. Kiene https://doi.org/10.4319/lo.1988.33.4_part_2.0725
  26. Appl. Environ. Microbiol. v.60 Emaymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS. Choi, S.C.;T. Chase, Jr;R. Bartha
  27. Aquat. Microb. Ecol. v.21 Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Christensen, P.B.;S. Rysgaard;N.P. Sloth;T. Dalsgaard;S. Schwarter https://doi.org/10.3354/ame021073
  28. Mar. Ecol. Prog. Ser. v.43 Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Cole, J.J.;M.L. Pace;S. Findlay https://doi.org/10.3354/meps043001
  29. Ann. Rev. Microbiol. v.54 Oxygen respiration by Desulfovibrio species. Cypolnka, H. https://doi.org/10.1146/annurev.micro.54.1.827
  30. Mar. Ecol. Prog. Ser. v.215 Effect of oxygen on the degradabiltiy of organic matter in subtidal and intertidal sedimints of thd North Sea area. Dauwe, B.;J.J. Middelburg;P.M.J. Herman https://doi.org/10.3354/meps215013
  31. The Sulfate-reducing bacteria: contemporary Perspectives Phylogeny of sulfate-reducing bacteria and a perspective for analysing their natural communities. Devereux, R.;D.A. Stahl;Odom, J.M.(ed);R. Singleton, Jr.(ed)
  32. Adv. Microb. Ecol. v.12 Oceanic bacterial production. Ducklow, H.W.;C.A. Carlson https://doi.org/10.1007/978-1-4684-7609-5_3
  33. Sulfate-Reducing Bacteria Metabokism of environmental contaminations by mixed and pure cultures of sulfate-reducing bacteria. Ensley, B.D.;J.M. Suflita;Barton, L.L.(ed)
  34. Appl. Environ. Microbiol. v.58 Rates of microbenthic and meiobenthic baterivory in a temperate muddy flat community. Epstein, S.S.;M.P. Shiaris
  35. Sul-fate-Reducing Bacteria Ecology of sulfate-reducing bacteria Fauque, G.D.;Barton, L.L.(ed)
  36. Limnol. Oceanogr. v.44 Sulfate reduction in surface sedimints of the southeast Atlantic comtinental margin between 15 °28'S and 27 °57'S (Angola and Namibia). Ferdelman, F.G.;H. Fossing;K. Neumann;H.D. Schulz https://doi.org/10.4319/lo.1999.44.3.0650
  37. Biogeochem. v.8 Measurement of bacterial sulfate reduction in sediments: evaluation of a single chromium reduction method. Fossing, H.;B.B. Jorgensen
  38. Geochim. Cosmochim. Acta v.43 Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic: suboxic diagenesis. Froelich. P.N.;G.P. Klinkgammer;M.L. Bender;N.A. Luedtke;G.R. Heath;D. Cullen;P. Dauphin;D. Hammond;B. Hartman;V. Maryland https://doi.org/10.1016/0016-7037(79)90095-4
  39. Appl. Environm. Microbiol. v.58 Diurnal of sulfate reduction under oxic conditions in cyanobacterial mats. Frund, C.;Y. Cohen
  40. J. Appl. Bacteriol. v.69 Physiology and ecology of the sulphate-reducing bacteria. Gibson, G.R. https://doi.org/10.1111/j.1365-2672.1990.tb01575.x
  41. Mar. Ecol. Prog. Ser. v.186 The importance of ciliates for interstitial transport in marine sediments. Glud, R.N.;T. Fenchel https://doi.org/10.3354/meps186087
  42. Mar. Ecol. Prog. Ser. v.206 Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland). Glud, R.N.;N. Risgaard-Petersen;B. Thamdrup;H. Fossing;S. Rysgaard https://doi.org/10.3354/meps206059
  43. Bacterial motabolism. Gottschalk, G.
  44. Mar. Ecol. Prog. Ser. v.61 Chemical flrxes and mass balances in a marine fish cage farm. I. Carbon. Hall, P.O.J.;L.G. Anedrson;O. Holby;S. Kollberg;M.-O. Samuelsson https://doi.org/10.3354/meps061061
  45. Sulfate-Reducing Bacteria Biocorrosion Hamilton, W.A.;W. Lee;Barton, L.L.(ed)
  46. Aquat. Microb. Ecol. v.10 Imapact of the softxhell clam Mya arenaria on sulfate reduction in an intertidal sediment. Hansen, K.;G.M. King;E. Kristensen https://doi.org/10.3354/ame010181
  47. Mar. Ecol. Prog. Ser. v.75 Aerobic and anaerobic mineralization of ogranic material in marine sediment microcosms. Hansen, L.S.;T.H. Blackburn https://doi.org/10.3354/meps075283
  48. The Sulfate-reducing bacteria: contemporary Perspectives Cabon metabolisom of sulfate-reducing bacteria. Hansen, T.A.;Odom, J.M.(ed);R. Singleton, Jr.(ed)
  49. Geochim. Cosmochim. Acta v.59 Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions. Harvey, H.R.;J.H. Tuttle;J.T. Bell https://doi.org/10.1016/0016-7037(95)00217-N
  50. Mar. Chem. v.49 Sedimentary organic matter preservation: an assessment and speculative synthesis. Hedges, J.I.;R.G. Keil https://doi.org/10.1016/0304-4203(95)00008-F
  51. Mar. Chem. v.39 Early diagenesis of organic matter in marine sediment. Henrichs, S.M. https://doi.org/10.1016/0304-4203(92)90098-U
  52. Estuar. Coast. Shelf Sci. v.20 Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire. Hines, M.E.;G.E. Jones https://doi.org/10.1016/0272-7714(85)90029-0
  53. Limnol. Oceanogr. v.34 Sulfate reduction and other sedimentary biogeochemistry in a northem New England salt marsh. Hines, M.E.;S.L. Knollmeyer;J.B. Tugel https://doi.org/10.4319/lo.1989.34.3.0578
  54. Estuar. Coast. Shelf Sci. v.32 Anaerobic microbial biogeochemistry in sediments fron two basins in the Gulf of Maine: evidence for iron and manganese reduction. Hines, M.E.;D.A. Bazylinski;J.B. Tugel;W.B. Lyons https://doi.org/10.1016/0272-7714(91)90046-E
  55. Limnol. Oceanogr. v.39 Acetate concentrations and oxidation in salt marsh sediments. Himes, M.E.;G.T. Banta;A.E. Giblin;J.E. Hobbie;J.B. Tugel https://doi.org/10.4319/lo.1994.39.1.0140
  56. Biogeochem. v.39 Sedimentary anaerobic microbial biogeochemistry in the Gulf of Trieste, northem Adriatic Sea: Influences of bottom water owygen depletion. Hines, M.E.;J. Faganeli;R. Planinc https://doi.org/10.1023/A:1005806508707
  57. App. Environm. Microbiol. v.65 Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Hines, M.E.;R.S.Evans;B.R.S. Genthner;S.G. Willis;S. Friedman;J.N. Rooney-Varga;R.Devereux
  58. Mar. Ecol. Progr. Ser. v.80 Impact of marine fish cagefarming on metabolism and sulfate reduction of underlying sediments. Holmer, M.;E. Kristensen https://doi.org/10.3354/meps080191
  59. Biogeochem. v.32 Seasonality of sulfate reduction and pore water solutes in a marine fish farm sediment: the importance of temperature and sedimentary organic matter. Holmer, M.;E. Kristensen
  60. Aquat. Microb. Ecol. v.20 Transformation and exchange processes in the Bangrong mangrove forest-seagrass bed system, Thailand. Sea-sonal and spatial variations in benthic metabolism and sulfur bio-geochemistry. Holmer, M.;F.O. Andersen;N. Holmboe;E. Kristensen;N. Thongtham https://doi.org/10.3354/ame020203
  61. Aquat. Botany v.71 The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Holmer, M.;F.Ol Andersen;S.L. Nielsen;T.S. Boschker https://doi.org/10.1016/S0304-3770(01)00170-X
  62. Mar. Ecol. Prog. Ser. v.225 Effects of sea level rise on growth of Spartina anglica and oxygen dynamics in rhizosphere and salt marsh sediments. Holmer, M.;B. Gribsholt;E. Kristensen https://doi.org/10.3354/meps225197
  63. Aquatic microbiology: An ecological approach Microbial processes in salt-marsh sediments. Howarth, R.W.;Ford, T.E.(ed)
  64. Oecologia v.97 Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance. Howes, B.L.;J.M. Teal https://doi.org/10.1007/BF00325879
  65. Microb. Ecol. v.33 The formation of large bacterial aggergates at depth within the Louisiana hydricarbon seep zone. Hyun, J.-H.;B.M. Bennison;P.A. LaRock https://doi.org/10.1007/s002489900024
  66. Bio-Science v.29 Chemosynthetic primary production at East Pacific sea floor spreading centers. Jannasch, H.W.;C.O. Wirsen
  67. Mar. Ecol. Prog. Ser. v.48 Denitrification in coastal bay sedimint: regional and seasonal variation in Aarhus Bight, Denmark. Jensen, M.H.;T.K. Andersen;J. Sorensen https://doi.org/10.3354/meps048155
  68. Limnol. Oceanogr. v.22 The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Jorgensen, B.B. https://doi.org/10.4319/lo.1977.22.5.0814
  69. Nature v.296 Mineralization of roganic matter in the sea bed - the role of sulphate reduction. Jorgensen, B.B. https://doi.org/10.1038/296643a0
  70. Marine geochemisty Bacteria and marine biogeochemistry. Jorgensen, B.B.;Schulz, H.D.(ed);M. Zabel(ed)
  71. Mar. Ecol. Prog. Ser. v.24 Seasonal cycles of O₂,$^NO₂{-}$ and $^SO₄{2-}$ reduction in estuarine sedimints: the significance of an NO₃$^{-}$ reduction maximum in spring. Jorgensen, B.B.;J. Sorensin https://doi.org/10.3354/meps024065
  72. Deep-Sea Res. v.37 Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas basin hydrotherma vent site (Gulf of California)ll Jorgensen, B.B.;L.X. Zawacki;H.W. Jannasch https://doi.org/10.1016/0198-0149(90)90099-H
  73. J. Kor. Soc. Oceanogr. v.7 A study of the macrozoobenthos at the intensive fish farming grounds in the southem coast of Korea,[The Sea] Jung, R.-H.;H.-S Lim;S.-S. Kim;J.-S. Park;K.-A. Jeon;Y.-S. Lee;J.-S. Lee;K.-Y. Kim;W.-J. Go
  74. Science. v.207 Deep-sea primary production at the Galapagos hydrothetmal vents. Karl, D.M.;C.O. Eirsen;H.W. Jannasch https://doi.org/10.1126/science.207.4437.1345
  75. Appl. Environ. Microbiol. v.66 Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. King, J.K.;J.E. Kostka;M.E. Frischer;F.M. Saunder https://doi.org/10.1128/AEM.66.6.2430-2437.2000
  76. Nature v.233 Corrosion by sulfate-reducing bacteria. King, R.A.;J.D.A. Miller https://doi.org/10.1038/233491a0
  77. FEMS Microbiol. Ecol. v.73 Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. King. G.M. https://doi.org/10.1111/j.1574-6968.1990.tb03933.x
  78. Appl. Environ. Microbiol. v.65 Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Knoblauch, C.;B.B. Jorgensen;J. Harder
  79. Mar. Ecol. Ser. v.180 Rates and pathways of carbon oxidation in permanently cold Arctic sedimints. Kostka, J.E.;B. Thamdrup;R.N. Glud;D.E. Canfield https://doi.org/10.3354/meps180007
  80. Biogeochem. v.60 Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sedimints. Kostka, J.E.;A. Roychoudhury;P. Van Cappellen https://doi.org/10.1023/A:1016525216426
  81. Limnol. Oceanogr. v.47 The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Kostka, J.E.;B. Gribsholt;E. Petrie;D. Dalton;H. Skelton;E. Kristensen https://doi.org/10.4319/lo.2002.47.1.0230
  82. Mar. Ecol. Prog. Ser. v.90 Preliminary study of benthic metabolism and sulfate reduction in a mangrove swamp of the Indus Dolta, Pakistan. Kristensen, E.;A.H. Devol;S.I. Ahmed;S. Monawwar https://doi.org/10.3354/meps090287
  83. Mar. Ecol. Prog. Ser. v.109 Acetate turnover, sulfate reduction and carbon metabolism in sediments of the Ao Nam Bor mantrove, Phuket, Thailand. Kristensen, E.;G.M. King;G.T. Banta;M. Holmer;M.H. Jensen;K. Hansen;N. Bussarawit https://doi.org/10.3354/meps109245
  84. Limnol. Oceanogr. v.40 Aerbic and anaerobic decomposition of organic matter in marine sediment: Which is fast? Kristensen, E.;A.I. Ahmed;A. Devol https://doi.org/10.4319/lo.1995.40.8.1430
  85. Aquat. Microb. Ecol. v.22 Carbon and nitrogen mineralization in sedimints of the Bangrong mangrove area, Phuket, Thailand. Kristensen, E.;F.O. Andersen;N. Holmboe;M. Holmer;N. Thongtham https://doi.org/10.3354/ame022199
  86. Geochim. Cosmochim. Acta v.65 Decomposition of plant materials in marine sediment exposed to different electron acceptors (O₂,$NO₃^{-}$,and $SO₄^{2-}$, with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Kristensen, E.;M. Holmer https://doi.org/10.1016/S0016-7037(00)00532-9
  87. Mar. Ecol. Prog. Ser. v.5 Energy flow in a tidal flat ecosystem. Kuipers, B.R.;P.A.W.J.de Eilde;F. Creutzberg https://doi.org/10.3354/meps005215
  88. Geo. Mar. Lett. v.14 Bacterioplankton growth and production at the Louisiana hydrocarbon seeps. LaRock, P.A.;J.-H. Hyun;B.W. Bennison https://doi.org/10.1007/BF01203721
  89. Appl. Environ. Microbiol. v.61 Application of antisera raised against sulfate reducing bacteria for inderect immunofluorescent detection of immunoreactive bacteria in sediment from the German Baltic Sea. Lillebak, R.
  90. J. Kor. Soc. Oceanogr. v.7 The outbreak, maintenance, and decline of the red tide dominated by Cochlodinium ploykrikoides in the coastal waters off southerm Korea from August to October, 2000. [The Sea], Lim, W.-A.;C.-S. Jung;C,-K. Lee;Y.-C. Cho;S.-G. Lee;H.-G. Kim;I.-K. Chung
  91. Microbiol. Rev. v.55 Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction. Lovley, D.R.
  92. Appl. Environ. Microbiol. v.53 Competitive mechanisms for ingibition of sulfate reduction and methane production in the zone of ferric iron erduction in sediments. Lovley, D.R.;E.J.P. Phillips
  93. Geonicrobiol. J. v.6 Manganese inghbition of microbial iron erduction in anaerobic sediments. Lovley, D.R.;E.J.P. Phillips https://doi.org/10.1080/01490458809377834
  94. Appl. Environ. Microbiol. v.54 Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Lovley, D.R.;E.J.P. Phillips
  95. J. Mar. Res. v.47 Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. Mackin, J.E.;K.T. Swider https://doi.org/10.1357/002224089785076154
  96. Appl. Geochem. v.5 Generation of short chain organic acid anion in hydrothrmally altered sediments of the Guaymas basin, Gulf of California. Martens, C.S. https://doi.org/10.1016/0883-2927(90)90037-6
  97. Science v.185 Methane production in the interstitial waters of sulfate depleted marine sediments. Martens, C.S.;R.A. Berner https://doi.org/10.1126/science.185.4157.1167
  98. Biogeochem. v.27 Sulfur and iron cycling in a coastal sediment: radiotracer studies and sea-sonal dynamics. Moeslund, L.;B. Thamdrup;B.B. Jorgensen
  99. Mar. Ecol. Prog. Ser. v.27 Gas advection in sediments of a South Carolina salt marsh. Morris, J.T.;G.J. Whiting https://doi.org/10.3354/meps027187
  100. Geochim. Cosmochim. Acta v.52 Microbial reduction of mangenese oxides: interactions with iron and sulfur. Meyers, C.;K.H. Mealson https://doi.org/10.1016/0016-7037(88)90041-5
  101. Mar. Ecol. Prog. Ser. v.119 Estuarine nitrogen retention independently estimated by the denitrification rate and mass balance methods: a study of Norsminde Fjord, Denmark. Nielsen, K.;L.P. Nielsen;P. Rasmussen https://doi.org/10.3354/meps119275
  102. Ophelia v.41 Coastal marine eutrophication: a definition, social causes, and future concerns. Nixon, S.W.
  103. Appl. Environ. Microbiol. v.65 Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Okabe, S.;T. Itoh;H. Satoh;Y. Watanabe
  104. Appl. Environ. Microbiol. v.44 Methanogenesis and sulphate reduction: competitive and non-competitive substrates in estuarine sediments. Oremland, R.S.;S. Polcin
  105. The ecolgy of saltnarsh. Pomeroy, L.R.;R.G. Wiegert
  106. Mar. Ecol. Prog. Ser. v.44 Impact of bioturbation by Arenicola marina on microbiological parameters in intertidal sediments Reichardt, W. https://doi.org/10.3354/meps044149
  107. Limnol. Oceanogr. v.31 Oxygen production and consumption in sediments determined at high spatial tesolution by computer simulation of oxygen microelectrode data. Revsbech, N.P.;B. Madsen;B.B. Jorgensen https://doi.org/10.4319/lo.1986.31.2.0293
  108. Aqust. Microb. Ecol. v.21 Marine meiofauna, carbon and netrogen mineralization in sandy and soft sediments of Disko Bay, west Greenland. Rysgaard, S.;P.B. Christensen;M.V. Sorensen;P. Funch;P. Berg https://doi.org/10.3354/ame021059
  109. Geomicrobiol. J. v.15 Temperature dependence and sulfate reduction in cold sediments of Svalbard Arctic Ocean. Sagemann, J.;B.B. Jorgensen;O. Greeff https://doi.org/10.1080/01490459809378067
  110. Limnol. Oceanogr. v.29 Above-and bilowground energent macrophyte production and tumover in a coastal marsh ecosystiem, Georgia. Schubauer, J.P.;C.S. Hopkinson https://doi.org/10.4319/lo.1984.29.5.1052
  111. The sulfate-reducing bactera: contemporaty perspectives The sulfate-reducing bacteria: an overview. Singleton, Jr. R.
  112. Geochim. Cosmochim. Acta. v.51 Early diagenesis in sediments from Danish coastal waters: microbial activity and Mn-Fe-S geocheistry. Sorensen, J.;B.B. Jorgensen https://doi.org/10.1016/0016-7037(87)90339-5
  113. The microbial world. 5th ed. Stainer, R.Y.;E.A. Adelberg;J. Ingragam
  114. Adv. Microb. Ecol. v.16 Bacterial manganese and iron reduction in aquatic sediments. Thamdrup, B. https://doi.org/10.1007/978-1-4615-4187-5_2
  115. Limnol. Oceanogr. v.41 Pathways of carbon oxidation in continental margin sediments off central Chile. Thamdrup, B.;D.E. Canfield https://doi.org/10.4319/lo.1996.41.8.1629
  116. Methods in ecosystim science Benthic respiration in aquatic sediments. Thamdrup, B.;D.E. Canfield;Jackson, R.B.(ed);O.E. Sala;H.A. Mooney;R.W. Howarth(ed)
  117. Geochim. Cosmochim. Acta v.58 Manganese, iron, and sulfur cycling in a coastal marine sediment, Asrhaus Bay, Denmark. Thamdrup, B.;H. Fossing;B.B. Jorgensen https://doi.org/10.1016/0016-7037(94)90298-4
  118. Appl. Environ. Microbiol. v.66 Microbial manganese and sulfate reduction in Black Sea shelf secimints. Thamdrup, B.;R. Tossello-Mora;R. Amann https://doi.org/10.1128/AEM.66.7.2888-2897.2000
  119. Limnol. Oceanogr. v.29 The role of sedimintary organic matter in bacterial sulfate reduction: the G model tested. Westrich, J.T.;R.A. Berner https://doi.org/10.4319/lo.1984.29.2.0236
  120. The prokaryotes , 2nd. ed. v.4 Gram-negative mesophilic sulfatereducing bacteria. Widdel, F.;F. Bak;Balows, H.G.T.A.(ed);M. Dworkin(ed);W. Harder(ed);K.-H. Schleifer
  121. J. Exp. Mar. Biol. Ecol. v.145 Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis. Ye, L.-X.;D.A. Ritz;G.E. Fenton;M.E. Lewis https://doi.org/10.1016/0022-0981(91)90173-T