A Study on Stabilization and Mechanical Properties of Polyacrylonitrile-based Fiber with Itaconic acid

이타콘산을 함유한 폴리아크릴로니트릴계 전구체섬유의 열안정화 및 그 물성에 관한 연구

  • Published : 2003.04.01

Abstract

In this study, a continuous stabilization process is used to make high-performance carbon fiber from polyacrylonitrile(PAM)-based fibers. The effect of oxygen content of PAN-based fiber on the stabilization process and the properties of the resultant carbon fibers is investigated. In order to research the progress of stabilization reaction FT-IR, elemental analysis, density, DSC, etc are used. Stabilization is carried out in air atmosphere from the 200 to $300^\circ{C}$ temperature range. An increase of PAN-based fibers diameter reduces the oxygen content during the continuous stabilization process. A higher oxygen content increase the density, tensile strength and modulus in the resultant carbon fibers. The most appropriate oxygen content in the stabilized fiber should be about 12%. Fibers having more than 2% oxygen content yield carbon fibers with inferior properties. Those carbon fibers also have sufficient commercial availability.

Keywords

References

  1. J. Appl. Polym. Sci. v.43 Effect of comonomer composition on the properties of polyacrylonitrile precursors and resulting carbon fiber J. S. Tsai;C.H. Lin https://doi.org/10.1002/app.1991.070430405
  2. Adv. Polym. Sci. v.51 The chemistry of carbon fiber formation from polyacrylonitrile G. Henrici-Olive;S. Olive https://doi.org/10.1007/BFb0017584
  3. Carbon v.19 Fourier transform IR studies of the degradation of polyacrylonitrle copolymers. I. Introduction and comparative rates of the degradation of three copolymers below 200℃ and under reduces pressure M. M. coleman;G. T. Sivy https://doi.org/10.1016/0008-6223(81)90118-4
  4. Carbon v.21 Studies of the degradation of acrylonitrile/acrylamide copolymers as a function of composition and temperature M. M. coleman;G. T. Sivy;P. C. Paniter;R. W. Snyder;B. Gordon III
  5. SAMPE QUARTERLY Effect of oxidation on the properties of carbon fiber J. S. Tsai
  6. SAMPE J. v.29 The relationship between ocidized degree and carbonization temperature for carbon fiber J. S. Tsai
  7. Fibre Sci. Technol. v.15 Structure of PAN fibers and its relationship to resulting carbon fiber properties O. P. Bahl;R. B. Mathur;K. D. Kundra https://doi.org/10.1016/0015-0568(81)90067-1
  8. Text. Res. J. v.65 Structure property relationship of PAN precursors fibers during thermo-oxidative stabilization S. K. Mukhopadhyay;Y. Zhu https://doi.org/10.1177/004051759506500104
  9. Carbon v.13 Effect of preoxidation conditions on mechanical properties of carbon fibers O. P. Bahl;L. M. Manocha https://doi.org/10.1016/0008-6223(75)90032-9
  10. FRJ no.May Itaconic acid in C-fiber precursor : Influence on carbon fiber properties T. Mueller
  11. British Patent, 1,110,791 W. Jhonson;L. N. Phillips;W. Watt
  12. J. Korean Fiver Soc. v.37 A study on the synthesis and characteristics of poly(acrylonitrile-methyl acrylate-itaconic acid) initiated by redox system in zinc chloride solution I. G. Shin;S. H. Lee;S. M. Park
  13. J. Korean Fiver Soc. v.38 A study on the synthesis and characteristics of poly(acrylonitrile-methyl acrylate-itaconic acid) initiated by redox system in zinc chloride solutin(II) -Effect of comonomer content- I. G. shin;S. H. Lee;S. M. Park
  14. J. Korean Soc. of Dyers & Finishers v.14 A study on fiber formation and physical properties of polyacrylonitrile copolymer with itaconic acid I. G. Shin;S. H. Lee;S. M. Park
  15. Macromol. Chem. Phys. v.C31 no.1 Acrylic precursors for carbon fibers A. K. Gupta;D. K. Paliwal;Pushpa Bajaj
  16. Fibre Sci. Technol. v.21 Reducing treatment of overoxidized PAN fibers for making carbon fibers R. B. Mathur;O. P. Bahl;D. gupta https://doi.org/10.1016/0015-0568(84)90015-0
  17. J. Appl. Polym. Sci. v.47 Characterization of PAN-based nonburning(nonflammable) fibers T. H. Ko https://doi.org/10.1002/app.1993.070470414
  18. Fibre Sci. Technol. v.9 Pyrolysis studies on polyacrylonitrile fibers : physical property/chemical structure changes during the initial stage og pyrolysis J. Ferguson;B. Mahapatro https://doi.org/10.1016/0015-0568(76)90001-4
  19. Fibre Sci. Technol. v.20 Infrared spectral studies of preocidized PAN fibers incopporated with cuprous chloride additive R. B. Mathur;D. Gupta;O. P. Bahl;T. L. Dhami https://doi.org/10.1016/0015-0568(84)90043-5
  20. Carbon Fibre S. Otani;K. Okuta;H. S. Matsuda
  21. J. Appl. Polym. Sci. v.58 Effect of an acidic comonomer on thermooxidative stabilization of polyacrylonitrile A. K. Gupta;D. K. Paliwal;P. Bajaj https://doi.org/10.1002/app.1995.070580710
  22. Carbon v.30 Model of stabilizaiton for PAN-based carbon fiber precursor bundles M. G. Dunham;D. D. Edie https://doi.org/10.1016/0008-6223(92)90042-U
  23. J. Matr. Sci. Letters v.9 Polyacrylonitrile precursors by copolymer and additive with itaconic acid J. S. Tsai;C. H. Lin https://doi.org/10.1007/BF00722155
  24. J. Mater. Sci. Letters no.1403 Determination of the aromatization index for oxidized polyacrylonitrile fibre by the differential scanning calorimetry method J. S Tsai;H. N. Hsu
  25. J. Appl. Polym. Sci. v.35 Thermal stabilization of polyacrylonitrile fibers T. H. Ko;H. Y. Ting;C. H. Lin https://doi.org/10.1002/app.1988.070350306