The Figures for the Alstom Power Pressurized Fluidized Bed Combustion Combined Cycle System

Alstom Power의 가압유동층 복합발전 시스템 특성

  • Published : 2003.02.01

Abstract

Pressurized fluidized bed combustion unit is operated at pressures of 1~1.5 MPa with combustion temperatures of 850~87$0^{\circ}C$. The pressurized coal combustion system heats steam, in conventional heat transfer tubing, and produces a hot gas supplied to a gas turbine. Gas cleaning is a vital aspect of the system, as is the ability of the turbine to cope with some residual solids. The need to pressurize the feed coal, limestone and combustion air, and to depressurize the flue gases and the ash removal system introduces some significant operating complications. The proportion of power coming from the steam : gas turbines is approximately 80:20%. Pressurized fluidized bed combustion and generation by the combined cycle route involves unique control considerations, as the combustor and gas turbine have to be properly matched through the whole operating range. The gas turbines are rather special, in that the maximum gas temperature available from the FBC is limited by ash fusion characteristics. As no ash softening should take place, the maximum gas temperature is around 90$0^{\circ}C$. As a result a high pressure ratio gas turbine with compression intercooling is used. This is to offset the effects of the relatively low temperature at the turbine inlet.

가압유동층 연소 유닛은 1~1.5 MPa, 연소 온도 850~87$0^{\circ}C$ 조건으로 운전된다. 가압 석탄 연소 시스템은 전열관을 통한 열전달로 증기를 생산하며 가스터빈으로 공급될 고온 가스를 생산한다. 가스 중의 고체 잔류물에 의한 가스터빈의 성능 저하 때문에 가스 정제가 매우 중요하며 석탄과 흡수제 및 연소 공기를 가압하여야 하고 배가스와 회 제거 시스템에서는 감압을 해야 하기 때문에 운전이 다소 복잡하다. 증기터빈 대 가스터빈에서 생산되는 전력의 비율은 약 80:20이고 모든 부하 범위에서 연소기와 가스터빈이 서로 적절히 조화를 이루어야 하기 때문에 PFBC와 복합 사이클 발전 루트는 독특한 제어 방식을 갖는다. 유동층에 적용할 수 있는 가스의 최대 온도는 회 융점에 의해 제한을 받기 때문에 가스터빈은 일반 가스터빈에 비해 좀 특별하다고 할 수 있다. 회의 용융이 일어나지 않도록 하기 위한 최대 허용 가스 온도는 약 90$0^{\circ}C$이다. 가스터빈의 높은 압력비 때문에 압축시 인터쿨링을 사용하며 이는 상대적으로 낮은 터빈 입구의 온도를 상쇄하기 위한 것이다.

Keywords

References

  1. Pressurized fluidized bed combustion process, Alstom Power, from personnel contact
  2. Why PEBC-CC?
  3. Fuel v.73 no.9 Formation and reduction of nitrogen oxides in fluidized-bed combustion Johnsson, J. E.
  4. Fuel v.73 no.7 Interaction between emissions of sulphur dioxide and nitrogen oxides in fluidized bed combustion Liu, W.(et al.)
  5. Fuel v.72 no.4 Influence of SO₂on the NO/N₂O chemistry in fluidized bed combustion Amnand, L.-E.(et al.)
  6. Proceeding of the (12th) International conference on fluidized bed combustion Cross flow filter performance with second generation PFBC carbonizer fuel gas Newby (et al.)
  7. Proceeding of the Coal Fired Power System 94 - advances in IGCC and PFBC Review Meeting Development of sorbents for high temperature desulfurization in moving bed systems Ayala (et al.)
  8. Proceeding of the (12th) International conference on fluidized bed combustion Measurement at alkali-vapor emission from pressurized fluidized bed combustion of Illinois coals Lee (et al.)
  9. Present situation and prospects for coal application technology Elecric Power Development Co. Ltd. (EPDC), 석탄이용국제 회의
  10. Technology status reports Fluidized bed combustion systems for power generation and other industrial applications Department of Trade and Industry