Removal of Hydrogen Sulfide, Ammonia, and Benzene by Fluidized Bed Reactor and Biofilter

  • Kim, Chong-Woo (School of Advanced Materials Engineering, Inje University) ;
  • Park, Jin-Su (School of Advanced Materials Engineering, Inje University) ;
  • Cho, Sung-Ki (School of Advanced Materials Engineering, Inje University) ;
  • Oh, Kwang-Joong (Department of Environmental Engineering, Pusan National University) ;
  • Kim, Young-Sik (Environmental Development Division, Samsung Everland) ;
  • Kim, Dong-Uk (School of Advanced Materials Engineering, Inje University)
  • 발행 : 2003.04.01

초록

In this study, hydrogen sulfide ($H_2S$), ammonia ($NH_3$), and benzene, which represent the major odor from a natural leather process plant, were removed using a fluidized bed bioreactor and biofilter including Thiobacillus sp. IW and a MY microbial consortium. The critical removal rate was $12g m^{-3}h^{-1}\;for\;H_2S,\;11g m^{-3}h^{-1}\;for\;NH_3\;and\;28 g m^{-3}h^{-1}$ for benzene by the fluidized bed bioreactor, and $8.5g m^{-3}h^{-1}\;for\;H_2S\;7g m^{-3}h^{-1}\;for\;NH_3,\;and\;25 g m^{-3}h^{-1}$ for benzene in the biofilter. The average removal efficiency of $H_2S$, $NH_3$, and benzene by continuous operation for over 30 days with the fluidized bed bioreactor was $95{\pm}3\%,\;99{\pm}1\%,\;and\;98{\pm}5\%$, respectively, whereas that with the biofilter was $96{\pm}4\%,\;95{\pm}4\%,\;and\;97{\pm}3\%$, respectively. Therefore, the critical removal rate of $H_2S$, $NH_3$, and benzene was higher in the fluidized bed bioreactor, whereas the removal efficiency on the continuous operation was similar in both bioreactors.

키워드

참고문헌

  1. J. Kor. Soc. Environ.Eng. v.23 Simultaneous removal of$H_2S#and $NH_3$by a three phase fluidized bed bioreactor Ahn, J. H.;Z. W. Im;D. Kim;K. J. Oh
  2. Biochemical Engineering Fundamentals Bailey, J. E.;D. F. Ollis
  3. Kor. J. Biotechnol Bioeng. v.9 Effect of cultivation condition on trowth of the hydrogen sulfide-degrading Thiovacillus sp. IW isolated from waste coal mine water Cha, J. M.;Y. Park;I. W. Lee
  4. Appl. Microbiol. Biotechnol. v.43 Enhanced anaerobiv degradation of benzene by enrichment of mixed microbial culture and optimization of the culture medium Chaudhuri, B. K.;U. Wiesmann https://doi.org/10.1007/BF00170641
  5. Chemosphere v.41 Biotreatment of $H_2S-and NH_3$-containing waste gases by coimobilized cells biofilter Chung, Y. C.;C. C. Huang;P. Tseng;J. R. Pan https://doi.org/10.1016/S0045-6535(99)00490-7
  6. Air Pollution Control: A Design Approach Cooper, C. D.;F. C. Alley
  7. Biotechnol. Bioeng. v.62 Temperature effects and substrate interactions during the aerobic biotrasformation of BTEX mixrure by toluene-enriched consortia and Rhodococcus rhodochrous Deeb, R. A.;L. Alvarez-Cohen https://doi.org/10.1002/(SICI)1097-0290(19990305)62:5<526::AID-BIT4>3.0.CO;2-8
  8. Biofiltration for Air Pollution Control Devinny, J. S.;M. A. Deshusses;T. S. Webster
  9. Leather Process Chemistry Han, K. D.;M. W. Kim;H. S. Han
  10. J. Microbiol. Biotechnol. v.10 Simultaneous removal of hydrogen sulfide and ammonia using Thiobacillus sp. IW in an three-phase fluidized-bed bioreactor Kim, S. H.;K. J. Oh;J. H. Moon;D. Kim
  11. Biotechnol. Bioeng. v.43 Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture Lee, J. Y.;J. R. Roh;H. S. Kim https://doi.org/10.1002/bit.260431120
  12. Standard Testing Methods for Air Pollution Lee, M. H.
  13. Kor. J. Microbiol. Biotechnol. v.30 Removal of malogorous gases from swine manure by a polyurethane biofilter inoculated with herotrophic and autotrophic bacteria Lee, Y. O.;C. K. Cho;H. W. Ryu;K. S. Cho
  14. Kor. J. Biotechnol. Bioeng v.16 Degradation of BTX by aerobic microbial consortium Moon, J. H.;C. W. Kim;J. S. Park;K. J. Oh;D. Kim
  15. J. Kor. Soc. Environ. Eng. v.18 Removal of BTX by immobilized microorganisms on granular activated carbon in fixed-film column reactor Oh, K. H.;J. C. Kim
  16. Biotechnol. Bioeng. v.44 Interactions between benzene, toluene, and p-xylene(BTX) during their biodegradation Oh, Y. S.;Z. Shareefdeen;B. C. Baltzis;R. Bartha https://doi.org/10.1002/bit.260440417
  17. Biotechnol. Bioeng. v.29 Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans Sublette, K. L.;N. D. Sylvester https://doi.org/10.1002/bit.260290613
  18. J. Environ. Sci. Health v.32 BIOFILTRATION: A promising and cost effective control technology for odors VOCs and air toxics Wani, A. H.;R. M. R. Branion;A. K. Lau https://doi.org/10.1080/10934529709376664
  19. Environ. Progress v.15 Biofilteration of odor, tosics and volatile organic compounds from publicly owned treatment works Webster, T. S.;J. S. Devinny;E. M. Torres;S. S. Basrai https://doi.org/10.1002/ep.670150311
  20. Composition of the Odor Yang, S. B.;S. H. Lee
  21. J. Ferment. Bioeng. v.72 Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. I55 isolated from peat biofilter Zhang, L.;M. Hirai;M. Shoda https://doi.org/10.1016/0922-338X(91)90093-V
  22. J. Technol. Biotech. v.73 A trickling fibrous-bed bioreactor for biofilteration of benzene in air Zhou, Q.;Y. L. Huang;D. H. Tseng;H. Shim;S. T. Yang https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<359::AID-JCTB970>3.0.CO;2-V