References
- Plant. Soil v.124 Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria Anuratha, C. S.;S. S. Gnanamanickam https://doi.org/10.1007/BF00010938
- Kor. J. Plant. Pathol. v.6 An impreved method for rapid screening and analysis of root colonizing biocontrol agents Bae, Y. S.;H. K. Kim;C. S. Park
- Soil Biol. Biochem. v.19 Bioassay for studying the role of siderophores and in potato growth stimulation by Pseudomonas spp. in short potato rotations Bakker, P. A. H. M.;A. W. Bakker;J. D. Marugg;P. J. Weisbeek;B. Schippers https://doi.org/10.1016/0038-0717(87)90036-8
- Mol. Gen. Genet. v.218 Genetic and structural characterizatio of the abirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria Bonas, U.;R. E. Stall;B. J. Staskawica https://doi.org/10.1007/BF00330575
- Prco. Natl. Acad. Sci. USA v.71 Agrobacterium tumefaciens and PSB bacteriophage DNA not detected in crown galltumor DNA Chilton, M. D.;T. C. Currier;S. K. Farrand;A. J. Bendrich;M. P. Gordon;E. W. Nester https://doi.org/10.1073/pnas.71.9.3672
- Mol. Gen. Genet. v.208 Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955 Dessaux, Y.;J. Tempe;S. K. Farrand https://doi.org/10.1007/BF00330457
- Gene v.76 Omegon-Km: A transposable element designed for in vivo insertional mutagenesis and cloning of genes in Gramnegative bacteria Fellay, R.;H. M. Kresch;P. Prentki;J. Frey https://doi.org/10.1016/0378-1119(89)90162-5
- Proc. Natl. Acad. Sci. USA v.76 Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans Fifurski, D. H.;D. R. Helinski https://doi.org/10.1073/pnas.76.4.1648
- Nat. Genet. v.3 Identification of protein coding regions by database similarity search Gish, W.;D. J. States https://doi.org/10.1038/ng0393-266
- Annu, Rev. Phytopathol v.29 Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum Hayward, A. C. https://doi.org/10.1146/annurev.py.29.090191.000433
- EMBO J. v.6 GUS fusions: β-glucuronidase as a sensitive ans versatile gene fusion marker in higher plants Jefferson, R. A.;T. A. Kavanagh;M. W. Beven
- Kor. J. Plant Pathol. v.13 Colonizing pattern of fluorescent pseudomonads on the cucumber seed and rhizoplane Kang, J. H.;C. S. Park
- Mol. Plant-Microbe Interact v.5 Suppression of root disease by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetyl phlotohlucinol Keel, C.;U. Schnider;M. Maurhofer;C. Voisard;J. Laville;U. Burger;P. Wirthner;D. Haas;G. Defago https://doi.org/10.1094/MPMI-5-004
- J. Microbiol. Biotechnol. v.11 Streptomyces showing antifungal activities aganist six plant pathogenic fungi Kim, B. J.;M. Cho;J. C. Kim;K. Y. Cho;G. J. Choi;C. H. Lee;Y. Lim
- Kor. J. Plant Pathol. v.14 Tracing of some root colonizing Pseudomonas in the rhizosphere using lux gene introduced bacteria Kim, J. W.;O. H. Choi;J. H. Kang;C. M. Ryu;M. J. Jeong;J. W. Kim;C. S. Park
- Nature v.286 Enhancement plant growth by siderophores produced by plant growth-promoting rhizobacteria Kloepper, J. W.;J. Leong;M. Teintze;M. N. Schroth https://doi.org/10.1038/286885a0
- Ms. D. Thesis, Gyeongsang National University Factors effecting on root colonization of Pseudomonas fluorescens L22 and Bacillus polymyxa E681 on hor pepper and growth enhancement by seed tratment Lee, S. H.
- Annu. Rev. Phytopathol. v.24 Siderophores: Their biochemistry and possible role in the biocontrol of plant parhogens Leong, J. https://doi.org/10.1146/annurev.py.24.090186.001155
- J. Microbiol. Biotechnol. v.12 A plant growth-promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy Lim, H. S.;J. M. Lee;S. D. Kim
- Proc. PGPR Workshop Biological control of cucumber damping-off and ehancement of seedling growth by low temperature-tolerant Pseudomonas fluorescens M45 and MC09 Park, C. S.;J. R. Yeom
- J. Microbiol Biotechnol. v.10 Screening and indentification of an antifungal Pseudomonas sp. that suppresses balloon flower root tor caused by Rhizoctonia solani Ryu, J. S.;S. D. Lee;Y. H. Lee;S. T. Lee;D. K. Kim;S. J. Cho;S. R. Park;D. W. Bae;K. H. Park;H. D. Yun
- Ms. D. Thesis, Gyeonsang National University Nature of root colonizing Bacillus polymyxa E681 and its effets on the growth of barley and sesame Ryu, C. M.
- Molecular Cloning: A Laboratory Manual (2nd ed.) Sambrook, J.;E. F. Fritsch;T. Maniatis
- Bio/Technology v.1 A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria Simon, R.;U. Priefer;A. Puhler https://doi.org/10.1038/nbt1183-784
- EMBO j. v.4 A Tn3 lacZ tranposon for the random generation of β-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium Satachel, S. E.;G. An.;C. Flores;E. W. Nester
- J. Bacteriol. v.169 Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea Staskawicz, B.;D. Dahlbeck;N. Keen;C. Napoli
- J. Bacteriol v.179 Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Thomashow, L. S.;D. M. Weller
- Elements of Biocontrol of Tomato Bacterial Wilt Trigalet, A.;D. Trigalet-Demery;P. Prior
- Phytopathology v.90 Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperature climates Van Elsas, J. D.;P. Kastelein;P. Van Bekkum;J. M. Van der Wolf;P. M. de Vries;L. S. Van Overbeek https://doi.org/10.1094/PHYTO.2000.90.12.1358
- J. Microbiol. Methods. v.48 A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere Van Overbeek, L. S.;M. Cassidy;J. Kozdroj;J. T. Trevors;J. D. van Elsas https://doi.org/10.1016/S0167-7012(01)00347-5