DOI QR코드

DOI QR Code

Millimeter-wave Dielectric Ceramics of Alumina and Forsterite with High Quality factor and Low Dielectric Constant

  • Published : 2003.04.01

Abstract

Millimeter-wave dielectric ceramics have been used like applications for ultrahigh speed wireless LAN because it reduces the resources of electromagnetic wave, and Intelligent Transport System (ITS) because of straight propagation wave. For millimeterwave, the dielectric ceramics with high quality factor (Q$.$f), low dielectric constant($\varepsilon$), and nearly zero temperature coefficient of resonant frequency ($\tau$) are needed. No microwave dielectric ceramics with these three properties exist except Ba(Mg$\_$1/3/Ta/sub1/3/)O$_3$ (BMT), which has a little high s: In this paper, alumina (Al$_2$O$_3$) and fosterite (Mg$_2$SiO$_4$), candidates for millimeter-wave applications, were studied with an objective to get high q$.$f and nearly zero $\tau$$\_$f/ For alumina ceramics, q$.$f more than 680,000 GHz was obtained but it was difficult to obtain nearly zero Qf. On the other hand, for forsterite ceramics, q$.$f was achieved from 10,000 GHz of commercial for sterite to 240,000 GHz of highly purified MgO and SiO$_2$ raw materials, and $\tau$$\_$f/ was reduced a few by adding TiO$_2$ with high positive $\tau$$\_$f/.

Keywords

References

  1. Ceramic Materials for Electronics R.C.Buchanan
  2. J. Appl. Phys. v.80 no.10 Sintered Alumina with Lowdielectric Loss N.M.Alford;S.J.Penn https://doi.org/10.1063/1.363584
  3. J. Am. Ceram. Soc. v.80 no.7 Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina S.J.Penn;N.M.Alford;A.Templeton;X.Wang;M.Xu;M.Reece;K.Schrapel https://doi.org/10.1111/j.1151-2916.1997.tb03066.x
  4. Electroceramics A.J.Moulson;J.M.Herbert
  5. J. Euro. Ceram. Soc. Development of High Q Forsterite Ceramics for High-frequency Applications M.Andou;T.Tsunooka;Y.Higashida;H.Sugiura;H.Ohsato
  6. J. Euro. Ceram. Soc. Effects of TiO₂ on Sinterability and Dielectric Properties of High-Q Forsterite Ceramics T.Tsunooka;M.Andou;Y.Higashida;H.Sugiure;H.Ohsato
  7. IRE Trans. Microwave Theory & Tech. v.MTT-8 B.W.Hakki;P.D.Coleman
  8. IEEE Transactions on MTT-33 Y.Kobayasi;M.Kato

Cited by

  1. The Particle Size Effect of Filler on Sintering Characteristics in Glass-Ceramics vol.52, pp.4, 2005, https://doi.org/10.2497/jjspm.52.271
  2. (1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications vol.81, pp.4, 2005, https://doi.org/10.1007/s00339-005-3282-5
  3. Low loss dielectric materials for LTCC applications: a review vol.53, pp.2, 2008, https://doi.org/10.1179/174328008X277524
  4. Mg2SiO4–TiO2 composite ceramics prepared using a liquid phase deposition process vol.22, pp.1-3, 2009, https://doi.org/10.1007/s10832-007-9388-8
  5. Liquid phase deposition process to deposit TiO2 in the porous Mg2SiO4 ceramics vol.118, pp.1380, 2010, https://doi.org/10.2109/jcersj2.118.731
  6. Low Temperature Sintering and Microwave Dielectric Properties of B2O3-added LiAlSiO4 Ceramics vol.94, pp.7, 2011, https://doi.org/10.1111/j.1551-2916.2011.04619.x
  7. Microwave Dielectric Properties of Fused Silica Prepared by Different Approaches vol.11, pp.1, 2014, https://doi.org/10.1111/j.1744-7402.2012.02846.x
  8. Effects of Zn/Mg Ratio on the Microstructure and Microwave Dielectric Properties of (Zn1−x Mg x )2SiO4 Ceramics vol.41, pp.4, 2012, https://doi.org/10.1007/s11664-011-1899-z
  9. Improvements in the Sintering Behavior and Microwave Dielectric Properties of Geikielite-Type MgTiO3 Ceramics vol.42, pp.3, 2013, https://doi.org/10.1007/s11664-012-2349-2
  10. Series of thermally stable Li1+2x Mg4−x V3O12 ceramics: low temperature sintering characteristic, crystal structure and microwave dielectric properties vol.25, pp.3, 2014, https://doi.org/10.1007/s10854-014-1755-z
  11. Low-temperature sintering of silica–boric acid-doped willemite and microwave dielectric properties vol.54, pp.10S, 2015, https://doi.org/10.7567/JJAP.54.10NE03
  12. Glass-ceramics vol.7, pp.1, 2015, https://doi.org/10.1111/ijag.12119
  13. Glasses vol.7, pp.3, 2016, https://doi.org/10.1111/ijag.12123
  14. Glass-Ceramic vol.7, pp.3, 2016, https://doi.org/10.1111/ijag.12216
  15. Methods for designing all-dielectric frequency selective surface via dielectric materials vol.214, pp.10, 2017, https://doi.org/10.1002/pssa.201700168
  16. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture vol.5, pp.38, 2017, https://doi.org/10.1039/C7TC03623J
  17. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics vol.56, pp.10S, 2017, https://doi.org/10.7567/JJAP.56.10PE01
  18. Microstructures and Microwave Dielectric Properties on Annealed Al2O3-TiO2 Composite Ceramics vol.388, pp.1662-9795, 2008, https://doi.org/10.4028/www.scientific.net/KEM.388.251
  19. Microwave Dielectric Ceramics vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/6158096
  20. Switching microwave dielectric resonators from a high-Q on state to an off state using low-field electron paramagnetic resonance transitions vol.113, pp.5, 2018, https://doi.org/10.1063/1.5042226
  21. -added Forsterite Nano-ceramics vol.350, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/350/1/012002
  22. Synthesis and characterization of borosilicate glass/β-spodumene/Al2O3 composites with low CTE value for LTCC applications vol.29, pp.11, 2018, https://doi.org/10.1007/s10854-018-8929-z
  23. Forsterite ceramics for millimeterwave dielectrics vol.17, pp.2-4, 2006, https://doi.org/10.1007/s10832-006-0452-6
  24. (Re: Nd, Sm, Eu, Dy, Yb, and Y) Ceramics vol.90, pp.2, 2007, https://doi.org/10.1111/j.1551-2916.2006.01435.x
  25. Solid Solutions with Cuspidine Structure vol.46, pp.10B, 2007, https://doi.org/10.1143/JJAP.46.7108
  26. Synthesis of High-Quality Forsterite vol.46, pp.10B, 2007, https://doi.org/10.1143/JJAP.46.7112
  27. Ceramics vol.90, pp.10, 2007, https://doi.org/10.1111/j.1551-2916.2007.01891.x
  28. Influence of TiO2 Particle Sizes on the Sintering and Annealing of Al2O3-TiO2 Microwave Dielectric Ceramics vol.115, pp.1347, 2007, https://doi.org/10.2109/jcersj2.115.797
  29. Quality Factor of Forsterite for Ultrahigh Frequency Dielectrics Depending on Synthesis Process vol.47, pp.9, 2008, https://doi.org/10.1143/JJAP.47.7729
  30. Microstructure and Microwave Dielectric Properties of the Li2CO3-Added Sr2V2O7 Ceramics vol.93, pp.8, 2010, https://doi.org/10.1111/j.1551-2916.2010.03676.x