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Abstract

Availability is an important measure of performance of a repairable component. In
this paper, the explicit expression for the availability of a repairable component, which
is subject to the policy II(Age Replacement Policy) of Barlow and Hunter (1960), is
obtained and the existence of the steady state availability is shown. The steady state
availabilities of the model are also obtained for the cases when the mean of the
minimal repair time is increasing at a geometric rate or linearly increasing. In order
to show the importance and the utility of the obtained result, we also consider an
illustrative example of the repairable coherent system whose components are
repairable, and the obtained results are applied to derive the steady state availability
of the whole system. In this situation, we can see that the condition of the existence
of the steady state availability for each component is essential. Some remarks on the
optimal replacement policy that maximizes the steady state availability are also given.

Keywords : Availability, Limiting efficiency, Repairable component, Minimal repair,

Replacement

1. Introduction

Consider a component which can be in one of two states, namely ‘up(on)’ and ‘down(off)’.
By ‘uplon)’ we mean the component is still functioning and by ‘down(off)’ we mean the
component is not functioning; in the latter case the component is being repaired or replaced,

depending on whether the component is repairable or not. Let X($H=1 if the component is
up at time ¢ and X(#) =0 if it is not. An important characteristic of a repairable component
is availability. The availability at time ¢ is defined by

1) Full-Time Lecturer, Department of Statistical Information, Catholic University of Daegu, 330 Keumrak
1-Ri, Hayang, Gyeongsan, Gyeongbuk, 712-702, Korea.
E-mail: jhcha@cuth.cataegu.ackr

- 191 -



192 Ji Hwan Cha

A()=PX(H=1)=E[ X(D],

which is the probability that the component is operational at time ¢ It is very difficult to
obtain an explicit expression for A(?® except for a few simple cases. However, in practice
when #—0co, usually the convergence of A({ is rapid, thus the limit A= I,i_,TOA( P is good
enough for measuring the performance of the component provided this limit exits. This limit
is called the steady state auailability of the component. Some other kinds of availability
which are useful in practical applications can be found in Birolini (1985, 1994) and Hoyland
and Rausand (1994). Another measure of performance associated with a repairable component
is efficiency, which is defined by

Er = -EUD).

t
where U(? is the total amount of functioning time during (0, #], that is, U(d = fo X(w)du.

This measure can be interpreted as the expected proportion of time that the component is in

the operational state during (0, £]. The limiting efficiency is defined by

Eff = lim Eff,= lim-2LU0)
f—00 100 t

which was first considered by Barlow and Hunter (1960), and then this measure means the
long-run expected proportion of time that the component is in the up(operational) state.
Note that if A= lti_)mA( P exists, then FEff. also exists and the relationship

lti_gloA(t)=Eff « holds(Barlow and Proschan, 1975, ch. 7). However, the A= lti_>r2A( D does

not always exist even if Eff. exists, which can be easily seen by considering the following

simple example.

Example 1.
Consider a component that is activated and functioning at time ¢=0. Whenever the

component fails, it is repaired completely. Let X, X5, - denote the successive lifetimes of
the component. Likewise we assume the corresponding repair times Y, Y5, .. Furthermore,
we assume that X;,=py a.s., Y;=v, a.s, for all i=1,2,---, where u and v are fixed
constants; that is, the lifetimes and repair times are all fixed constants and they are mutually

independent. In this case, it obviously holds that

o ECUW)) __u
Bff = tim B = s

However, the availability A(#) has its value 0 and 1 periodically as #—>oo, thus its limit, the
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steady state availability, does not exist.

Numerous authors have studied the following replacement policy: The component is
renewed(or replaced) every time its age reaches at 7. For each intervening failure only
minimal repair is done(Age Replacement Policy). Barlow and Hunter (1960) first proposed this
model and showed that there exists optimal policy maximizing limiting efficiency when the
failure rate of the component is increasing failure rate(JFR). However, the existence of the
steady state availability of the model has not been reported.

In this paper, the existence of the steady state availability is shown and some remarks on
the importance of the property are given. Furthermore, the steady state availabilities of the
model are also obtained for the cases when the mean of the minimal repair time is increasing.
Also we consider the coherent repairable system whose components are repairable, and it is
shown that the obtained results can be applied to derive the steady state availability of the
whole system.

2. Model Description

We consider a component with failure rate A(#). Let this component be renewed every time
its age reaches at 7. For each intervening failure only minimal repair is done. Assume that

during the repair of the system it does not age, and we also assume that after each renewal
the component state is as good as new state. Now we introduce the notations and random

variables that are needed.

T, . the time of the completion of the ¢ * renewal with T,=0, i=1,2,.

N;': the total number of failures in the i® renewal period, (7T;-;, T.], i=1,2,

N;: N=N;+1, i=1,2,-.

X;; : the lifetime of the component which has been renewed (Z—1) times and has

been minimally repaired (j—1) times after the time of the (i—1)* renewal
i=1,2,--,7=1,2,---,N;. (Note that the distribution of X ,; depends on N; and
N.
that 2X,'_j= T.)
=
F (»5;(® : the conditional distribution function of X ;; given N,= 7.

F (D 1 F (5 (9=1—F (;(d.
E(Xi,[lNi-:r): E(Xi,lei= V)E,U(r)j, Z.=1,2,"', j=1,2,"',7’, r=2’3’”"
Y., the repair time which corresponds to X;; ¢=1,2,---,j=1,2,---,N;

Ziyt Zi= B (Ximt Vi), i=1,2,, =12, N~ L.
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N, N,
Z; . Z= Zl(Xi’M+ Y:=T+ 21Y,~‘m, i=1,2,-, ie, the length of the i®
m= m=

NA
renewal period.(Obviously, T,= 2!Z,-=nT+ 21 ZIY,-',-, n=1,2,-.)
1= i=17=
F(»z (D : the conditional distribution function of Z;; given N;=7, i=1,2,-,

j: 1’2’ S 1, 7=‘2’

F (pj+1z,,=s(D © the conditional survivor function of X,;+, given Z;;=s and
N;=7, that Iis P{X;’H.lztl Z,‘_j=S, N;= 7’}, i=1,2,-, =12,-,r—1,
=23,

H({) : the distribution of Z; i=1,2, .
H™($) : n-fold convolution of H(D.

M Muld= ng("’(t).

. _J1 if (T
Iy )= { 0 otherwise.
N1=4
X114 X12+ X134+ X14=T Renewal Point
X(t) l
g X114 X12 X13 X1 X21 X22
0 Y11 Y12 Y13 Y14 Y21 Y22
Z11 " t
712 »
Z13 4
71 "

[Figure 1.] The state diagram for availability model
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Now the assumptions are described. We assume that the distribution of Y;; is(when

N;#1), a continuous distribution G;(y) with mean vy; for ¢=1,2,--, ji=1,2,--,N;,—1,
and is a continuous distribution Gy(y) with mean v, for ¢=1,2,:-, 7= N, Furthermore,
assume that the Z;’s are mutually independent for i=1,2,:--. Observe that, for the case of

N;=1, the corresponding renewal period consists of X ;;=7 and Y,;, and the distribution
function of Y;; is Gy(y). Note that Z;;'s are not defined in this case. Also observe that,
in this case, E(Y;;)=vy, and Z;=(T+Y;,).

For the sake of a better understanding of many complicated notations and random variables,
a state diagram is presented in the above Figure 1.

3. Results on Availability

Under the assumptions described in section 2, the explicit expression for A(# and the
steady state availability is given in the following theorem.

Theorem 1. The explicit expression of the availability at time ¢ A(®, of the model is
given by

A=A+ [ ‘Ay(t— wdMy(w). =0,

where

sl r—l. —_—
Ad=exp (- A( D) - 109+ F, AN en (CALD)

— =1t __
X[ Fon()+ Zifo F (isuz,=s (£ S)dezl.f(s)]’
and the steady state availability of the model exists and it is given by
t>c0

T
T+ACT) - i+

T
where A(T)= fo A(w)du.

proof.
Observe that

A(D=HAX(=1, =T}
= ;ZIP{X(t)=1’ tSTll ler} ’ HN1=7}

=18 - exp (AT + ZAX 1124 Ni=7)
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f_l " B

+ I=IHZI.j< tSZ]_j+Xl’j+l| Nl= r}] . (A( T)) (r’-—ei()[; ( A( T))
=] =1, _

= exp (—A(T) - I1()+ 3~ AN — e (—ALT)

— = t—
X[ Fmn(d+ ,Z:fo F i1z, =s (2= S)dsz,,,.(S)]-

Furthermore,
PX(D=1, T, Xt<T, 1)
= 3 AX(D=1, TKt<Tpos, Nyur=7)
= ZP{XU)=1, T,Xt<T ppl Nyyy=7} AN 1= 7}
=P{TXt<T,+TI N,y =1} - exp (—A(T))
+ 22 AT, Kt<T,+ X 10l Nor1=7}

+ = P{Tn'}'Zn-H,i(tS Tn+Zn+l,j+Xn+l,j+l| Nn+l=7’} ]'

(A7 - exp(=A(T)

(r— 1!

- folexp (—A(D) I {(t—wdH ()

& (AN - exp (=A(T) b=
+2 e [ JAF o=

= t—1
+ BT F oz = U= 4= 9 AF iz, (9VAH (10 |

= fotexp (= A(D) - I {t—w)dH ()
o0 r_'l . _ .
+f0‘[ rZz —— ( exp (= A(D) { F(r)l(l‘_—u)
1 e

r— !
+ Elfo —I": (r)f+llZ,.ﬂJ=s(t— u— s)dF (T)Z,.H,,-(s)}]dH(”)(u)

=
t
= fo A(t—uw)dH " (w) , by the monotone convergence theorem.

Hence,
A =Ay D+ 3 [ Agt—dH ™ ()
=D+ |, "Ag(t— w)dMy ().

Note that
00 00

and by the Key Renewal Theorem,
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t
limA(#) = ltgrpof()Ao(t— wdMy(u)
__1 _r-
=25 fo Ag(Ddt.
Here E(Z)) is calculated. Note that

B(Z) = 2B(Z) N=7- PN=1
=) r—1 _
rzl (ACT) (r_efi)l‘)( A(T) . {T+(7"“1)V1+V2}
= T+A(T) . V1+V2_

On the other hand,
fo Ay(Ddt

=] . r_l. _
= [“exp (- A(T) - I ar+ F, AL el Al

0o __ — -] t__
[fo F o (9dt+ gfo fo F (ivuz, =s(t— S)dF(r)zl.,-(S)dt]

o) r—1 . —
—exp (—A(T) - T+ ;12 (A(D) (r—eS?( A(D) Aot ]22# (i

(AT 7! exp (=ACT) T
) (r— 1!

8

[

Y

N

where, by exchanging the order of integrals, the equality
o t
fo fo F (i+1z,,=s (2= 9 dF (z, (dt= pt (941,

holds. This completes the proof. |

Until now, we have considered the case when the distributions of the minimal repair times
in a renewal period are identical. However, in many cases, the repair time might be
increasing. For example, in view of the ageing and cumulative wear, the repair times increase
as the operating time of the component increases. Yeh (1988) proposed a geometric process
and considered the optimal replacement problem when successive survival times constitute a
non-increasing geometric process and successive repair times constitute a non-decreasing
geometric process. The geometric process is introduced in the following definitions.

Definition 1.(Yeh, 1988) Given a sequence of random variables X;, X,, - if for some
a0, {a"'X,, n=1,2,} forms a renewal process, then {X,, »n=1,2,-} is a
geometric process. a is called the parameter of the geometric process.

Definition 2.(Yeh, 1988) A geometric process is called a non-increasing geometric process
if a=]1 and a non-decreasing geometric process if a<1.

Now, we consider the same availability model assuming that minimal repair times in a
renewal cycle constitute a strictly increasing geometric process, i.e., a geometric process with
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a{l. As in the first model in this section, the component is renewed every time its age
reaches at 7. For each intervening failure only minimal repair is done. We assume that the
sequence {Y;;, j=1,2,--, N/Hwhen N; =1) forms a geometric process with parameter
all, i=1,2,---. Assume that, for N,#+1( N;">1), the distribution of Y;; is G,;(» and
that of the replacement time Y ;y is G,(»), where the mean of G,(y) is v; and that of
G,(y) is vy For N;=1( Ny =0(), the distribution of Y;; is G;(y) and the mean of
Y, is v, Observe that, with a=1, the availability model under consideration reduces to

the first model. In this situation, by the similar arguments described in the first model, we
have the following result.
Corollary 1. When the minimal repair times in a renewal cycle, {Y,;, j=1,2,--, N/},

form a geometric process with @{1, the steady state availability of the model exists and it is

given by
A= lti_)rgA(t)
— T . @)
T+ (el (L -DADI-1) 725 v+ v
proof.

To prove the Corollary 1, it suffices to show that

E(Z) =T+ (expl(-5 = DA(DI- D72 v+ 1.

N,
Since Z;= T+ 21 Y., E(Z) is given by
f=

o
EZ) = T+E(]Z‘Y,~,,--I(N,-’21) )+ E(Yix)

Ny ’ '
= T+E(]2=:lyi.j . I(N; 21) )+V2,

N

where E( 21 Y,; KN/ =1)) is given by
&

N

N/
E(R Y. AN/2D)) = BB(Q Y LN/ 2D | N))

o 1=(-0)" (ACTY" - exp (= ACTY)
=3 a’_ . exp
n=0 1___1_ 1 n!
a

= (expl(L -DADI-D7% ui.

Therefore,

E(Z) =T+ (expl(-£ =DA(DI- D727 v+ s,
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This completes the proof. [ ]
Remark 1.

The result obtained in Corollary 1 still holds even though the parameter a satisfies @)1, that

is, for the case when the minimal repair times in a renewal cycle, { Y;;, /=1,2,-, N;’},

form a strictly decreasing geometric process.
Now, we consider the case when the mean of minimal repair time in a renewal cycle is

linearly increasing; that is, we assume that, when N;>2( N; =1), Y;;s have continuous
type distribution functions and E(Y,;)=wy+jv;, for j=1,2,-, N;—1, and E(Y;;))=vs,
for j= N, Obviously, we also assume that, when N;=1(N;,"=0), E(Y;;)=v, In this
case, we have the following result.

Corollary 2. When the mean of the minimal repair time in a renewal cycle is linearly
increasing, the steady state availability of the model exists and it is given by

A = limA(D
F o]

= T - . 3)
T+ AT (vy+ vy) +(A(T))? —21— + vy

proof.
As in Corollary 1, to prove the Corollary 2, it suffices to show that

B(Z) =T+ A(D v+ m) + (AT - + v,
N;
Since Z;= T+ zl Y., E(Z)) is given by
£

N,
E(Z) = T+E(]§‘Y,.,,--1(N,f21) )+ E(Y i x)
=

= T+E()21Y,_) 'I(N,-’Zl) )+U2,
N’
where E( ,Z:‘ Y;;I(N/=1) ) is given by
N, N/
B Y KN/ 21)) = EGE(Q Y, LN/ =1) | N)
3 2 " — AT

= B[(w+ ) 4] - AT 20 (< AT
= AT v+ ) +(A(T)? 5

Therefore, we have obtained the desired result. [ ]
Remark 2.
If the failure rate function of the component A(#) is strictly IFR(increasing failure rate) and it

satisfies ltim/i( H=o0 fhen, for the steady state availability given in (1), (2) and (3), it can
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be shown that there exists a unique solution 7" satisfying
T* = Arg[ max 7> A (7')],
that is, A ()= max 7= A(p, where A(p is the steady state availability when the
replacement policy 7 is used.
The following Example 2 and Remark 3 show and explain the importance and the utility of
Theorem 1.
Example 2.

We consider a parallel system consisting of two components. Assume that each component is

subject to the operating rule described in section 2(Age Replacement Policy with identically
distributed minimal repair times) with replacement policy 7, #=1,2, that is, the ¢ t
component is replaced by an identical new component every time its age reaches

T, i=1,2, and for each intervening failure of the component 7, the failed component is

only minimally repaired. Assume that the two components operate independently of one
another. Specifically, while a repair or a replacement of a failed component is occurring in one
position, the other components continue to operate. Let the failure rate of the first component

be Al(t)=/11,81tﬂ'“l and that of the second component be /lz(t)=/12/92tﬂrl, where A1, 4200
and By, 8> 1, which are the Weibull type failure rate functions. Furthermore, we assume that
the mean of the identically distributed minimal repair time for the first component is v and
that of the second component is Vg, and the mean time for renewal(replacement) of the first
component is Vg and that of the second component is vg. Note that, in this situation, it is

hard to derive the steady state availability(or limiting efficiency) of the system directly by
considering the renewal point of the whole system. However, by considering the availability of
each component, we can easily derive the steady state availability of the whole system.
Observe that in this case we can express the state X(#) of the coherent system in terms of

the component states, X,(#, X,(9;
X(8=¢(X, (), Xp(9) =1~ TL(1 = X;(D) = max 1.9 XD,
where ¢ is the coherent structure of the two components, and thus the availability of the
system at time ¢, A(J, is given by
A)=Ex@) =H1- [a-X.0)]
—1- -4,
= (A (1), Ay(1)),

where A/(? is the availability at time ¢ of the component 7, ¢=1,2, and the reliability
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function k4 is defined by k(p;, po)=1— Ijl(l— p;). Then, since we have shown the existence

of the steady state availability of each component in Theorem 1, that of the system also
exists and is given by

P T _ T
=1 1 A 1 B; ’
Tyt+A Twy -vutvay T+l Ty ™ -vptuy

where A; is the steady state availability of the component ¢ 7=1,2. In this situation, the

optimal replacement policy, T~ = ( T, Ti), maximizing the steady state availability of

system in (4) is determined by

1 1
8.

70:([ /h(ﬁlyill)vu ] ﬁl’[ /‘2(.3:221)”12] )

which is the simple combination of the optimal replacement policies maximizing the steady
state availability of each component.

Remark 3.
As briefly remarked in Example 2, when we are interested in deriving the steady state

E(U(Y)
t

availability A= lti_)mA( D or the limiting efficiency Effo= 1,1,12 of the coherent

system, we can hardly find the renewal points of the whole system and thus the performance
measures(steady state availability or limiting efficiency) could not be obtained directly.
However, by considering the availability of each component and by showing the existence of
the steady state availability of each component, we can easily obtain the limiting measures of

system performance(Note that Eff. is obtained by deriving A= l,i_,r?oA( ). Also the method

of proof described in Theorem 1 could be applied to other replacement models by simply
modifving some detailed parts.
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