Abstract
It is an aim of this study to perform extensive numerical study for analyzing the anisotropic turbulence effects on spatial and temporal behaviors of diesel sprays after wall impingement. The turbulence model of Durbin is used for comparisons with the $k-\varepsilon$ model. The turbulence-induced dispersions of droplets are considered to describe the anisotropy of turbulence effectively and the spray/wall interactions are simulated using the model of Lee and Ryou. The present study investigates the internal structures of impinging diesel sprays such as Sauter mean diameter (SMD), loca1 droplet velocities, and local gas velocities and also compares the results predicted by two turbulence models with the experimental data. The Durbin's model considering the anisotropy of turbulence predicts both gas and droplet tangential velocities better than the$k-\varepsilon$ model does. It is concluded that the anisotropy of turbulence should be considered in simulating impinging diesel sprays.