An On-line Speech and Character Combined Recognition System for Multimodal Interfaces

멀티모달 인터페이스를 위한 음성 및 문자 공용 인식시스템의 구현

  • 석수영 (영남대학교 일반대학원 정보통신공학과) ;
  • 김민정 (영남대학교 일반대학원 정보통신공학과) ;
  • 김광수 (경운대학교 컴퓨터전자정보공학부) ;
  • 정호열 (영남대학교 전자정보공학부) ;
  • 정현열 (영남대학교 전자정보공학부)
  • Published : 2003.04.01

Abstract

In this paper, we present SCCRS(Speech and Character Combined Recognition System) for speaker /writer independent. on-line multimodal interfaces. In general, it has been known that the CHMM(Continuous Hidden Markov Mode] ) is very useful method for speech recognition and on-line character recognition, respectively. In the proposed method, the same CHMM is applied to both speech and character recognition, so as to construct a combined system. For such a purpose, 115 CHMM having 3 states and 9 transitions are constructed using MLE(Maximum Likelihood Estimation) algorithm. Different features are extracted for speech and character recognition: MFCC(Mel Frequency Cepstrum Coefficient) Is used for speech in the preprocessing, while position parameter is utilized for cursive character At recognition step, the proposed SCCRS employs OPDP (One Pass Dynamic Programming), so as to be a practical combined recognition system. Experimental results show that the recognition rates for voice phoneme, voice word, cursive character grapheme, and cursive character word are 51.65%, 88.6%, 85.3%, and 85.6%, respectively, when not using any language models. It demonstrates the efficiency of the proposed system.

본 논문에서는 음성과 온라인 문자를 단일시스템으로 인식할 수 있는 음성 문자 공용인식 시스템을 제안한다. 일반적으로 CHMM(Continuous Hidden Markov Model)은 음성인식과 온라인 문자인식을 위해 매우 유용한 도구로 잘 알려져 있으나, 인식을 위해서는 각각을 독립 시스템으로 구현하고 있어 추가적인 메모리와 계산량을 요구한다. 제안한 공용인식 시스템은 음성인식과 문자인식을 결합하기 위하여 이들을 동일한 CHMM모델로 구성한 후 상태단위로 지속정보를 제어하는 OPDP(One Pass Dynamic Programming) 알고리즘을 통하여 음성과 문자를 인식할 수 있는 확률 통계적 시스템을 구현하였다. 음성은 MFCC(Mel Frequency Cepstrum Coefficient) 파라미터, 문자는 위치 변화량 파라미터와 비트맵 파라미터를 사용하였으며, MLE(Maximum Likelihood Estimation) 추정법을 이용하여 음소와 자소를 결합한 115개의 3상태 9천이 CHMM모델을 구성하였다. 공용인식기의 실험결과 음소 인식률 51.65%, 음성 단어 인식률 88.6%, 자소 인식률 85.3%, 필기체 단어인식률 85.6%를 나타내어 공용인식의 유효함을 확인할 수 있었다.

Keywords