DOI QR코드

DOI QR Code

엔트로피를 이용한 흐름분배 알고리즘 해석

Entropy Interpretation On flow Distribution Algorithms

  • 이학수 (부산대학교 청정공학 협동과정) ;
  • 강창용 (부산대학교 환경공학과) ;
  • 김상현 (부산대학교 공과대학 환경공학과) ;
  • 정성원 (한국건설기술연구원)
  • 발행 : 2003.04.01

초록

습윤지수는 TOPMODEL, THALES 등의 수문모형에서 유역수문과정을 기술하는 지표로서 사용되며, 습윤지수의 계산방법과 한계성에 대한 많은 연구가 보고되고 있다. 임의유역에 대한 습윤지수 분포함수는 사용되어지는 흐름분배 알고리즘에 의존하게 되므로, 적절한 알고리즘의 선정과 알고리즘간의 비교가 필요하다. 본 연구에서는 엔트로피 개념을 이용하여 수치고도모형내의 정보가 각 흐름분배 알고리즘에 의해 습윤지수 분포함수로 도출되는 과정에서, 각 흐름분배 알고리즘에 따른 정보이동량을 해석하고 실측된 지표토양수분과의 상관성 검토를 통한 기존흐름분배 알고리즘들의 고찰을 시도하였다. Holmgren의 구배멱급수 알고리즘과 SDFAA 알고리즘은 습윤지수의 정보량 최대화를 위해 가장 적절한 알고리즘으로 판명되었다.

The wetness index has been frequently used to describe the spatial distribution of the hydrologic status on the platform of the grid based model such as TOPMODEL and THALES. The statistical and spatial distributions of the wetness index are primarily depend upon the flow determinatin algorithm. The comparison among various algorithms and the decision making of the application algorithms are desirable. The entropy is used to evaluate the information transfer patterns of the various flow determination algorithm. The Holmgren's H algorithm and the SDFAA algorithm were found to be the better scheme than the other approaches to maximize the information contents of the wetness index.

키워드

참고문헌

  1. 김상현, 이지영 (1999) '개선된 지형지수 산정 알고리즘의 적용에 관한 연구' 한국수자원학회 논문집, 제32권 4호, pp. 489-499
  2. 김상현, 이학수, 강창용, 김남원 (2002) '자연하천 형상을 이용한 최적 흐름분배 알고리즘의 개발' 한국수자원학회 논문집, 제35권 4호 pp. 345-358 https://doi.org/10.3741/JKWRA.2002.35.4.345
  3. 유철상, 정광식 (2002) '엔트로피 이론을 이용한 강우관측망 평가; 혼합분포와 연속분포의 적용 비교' 한국수자원학회 학술발표회, pp. 1257-1261
  4. 한국건설기술연구원, (1998) '시험유역의 운영 및 수문특성 조사·연구' 연구보고서, 건기연 98-077
  5. Barling, RD., Moore, I.D., and Grayson, RB. (1994). 'A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content.' Water Resour. Res., Vol. 30, No. 4, pp. 1029-1044 https://doi.org/10.1029/93WR03346
  6. Beven, K.J., and Kirkby, MJ. (1979). 'A physically-based variable contributing area model of basin hydrology.' Hydrol. Sci. Bull., Vol. 24, pp. 43-69 https://doi.org/10.1080/02626667909491834
  7. Costa-Cabral, MC, and Burges, S.J. (1994). 'Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas.' Water Resour. Res., Vol. 30, pp. 1681-1692 https://doi.org/10.1029/93WR03512
  8. Grayson, R.B., Moore, I.D., and McMahon, TA (1992a). 'Physically based hydrologic modeling, I. A terrain-based model for investigative purposes.' Water Resour. Res., Vol. 26, pp. 2639-2658
  9. Grayson, R.B., Moore, I.D., and McMahon, T.A (1992b). 'Physically based hydrologic modeling, II. Is the concept realistic?' Water Resour. Res., Vol. 26, pp. 2659-2666
  10. Holmgren, P. (1994). 'Multiple flow direction algorithms for runoff modeling in grid based elevation models and empirical elevation.' Hydrol. Process., vol. 8, pp. 327-334 https://doi.org/10.1002/hyp.3360080405
  11. Kottegoda, N.T., and Rosso R. (1996). Statistics, Probability, and Reliability for Civil and Environmental Engineers, McGraw-Hill, pp. 115-116
  12. Kuo, W., Steenhuis, T.S., McCulloch, C.E., Mohler, C.L., Weinstein, D.A, DeGloria, S.D., and Swaney, D.P. (1999). 'Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model.' Water Resour. Res., Vol. 35, pp. 3419-3428 https://doi.org/10.1029/1999WR900183
  13. Mendicino, G., and Sole A (1997). 'The information content theory for the estimation of the topographic index distribution used in TOP-MODEL.' Hydrol. Process., vol. II, pp. 1099-1114 https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1099::AID-HYP547>3.0.CO;2-F
  14. O'Callaghan, J.F., and Mark, D.M (1984). 'The extraction of drainage networks from digital elevation data.' Computer Vision, Graphics and Image Processing, Vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  15. O'Loughlin, E.M (1986). 'Prediction of surface saturation zones in natural catchments by topographic analysis.' Water Resour. Res., Vol. 22, pp. 794-804 https://doi.org/10.1029/WR022i005p00794
  16. Quinn, P., Beven, K., Chevallier, P., and Planchon O. (1991). 'The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models.' Hydrol. Process., vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  17. Quinn, P.F., Beven, K, and Lamb R (1995). 'The ln(a/tan ${\beta}$) index : How to calculate it and how to use it within the TOPMODEL framework.' Hydrol. Process., vol. 9, pp. 161-182 https://doi.org/10.1002/hyp.3360090204
  18. Shannon, C.E., and Weaver, W. (1949). The Mathematical Theory of Communication, The University of Illinois Press, Urbana, pp. 117
  19. Vertessy, RA, Hatton, T.J., O'Shaughnessy, P.J., and Jayasuriya, MD.A (1993). 'Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model.' J. Hydrol, Vol. 150, pp. 665-700 https://doi.org/10.1016/0022-1694(93)90131-R
  20. Western, AW, Grayson, RB., Bloschl, G., Willgoose, GR, and McMahon, T.A (1999). 'Observed spatial organization of soil moisture and its relation to terrain indices.' Water Resour. Res., Vol. 35, No. 3, pp. 797-810 https://doi.org/10.1029/1998WR900065
  21. Wigmosta, MS., and Lettenmaier, D.P. (1999). 'A comparison of simplified methods for routing topographically driven subsurface flow.' Water Resour. Res., Vol. 35, No. 1, pp. 255-264 https://doi.org/10.1029/1998WR900017
  22. Zhang, W and Montgomery, D.R (1994). 'Digital elevation model grid size, landscape representation, and hydrologic simulations.' Water Resour. Res., vol. 30, pp. 1019-1028 https://doi.org/10.1029/93WR03553