DOI QR코드

DOI QR Code

Surimi Processing Using Acid and Alkali Solubilization of Fish Muscle Protein

산과 알칼리 pH에서 어육 단백질의 용해를 이용한 수리미 제조

  • 박주동 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 정춘희 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 김진수 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 조득문 (창원대학교 식품영양학과) ;
  • 조민성 ;
  • 최영준 (경상대학교 해양생물이용학부/해양산업연구소)
  • Published : 2003.04.01

Abstract

The surimi processing from jack mackerel and white croaker muscle using acidic and alkaline solubilization was evaluated. The optimum pH for solubilizing protein in acidic and alkaline range was around 2.5 and 10.5, respectively. The optimum pH value for recovery of protein was around 5. The protein solubility was decreased with increase of salt. The homogenized speed and time for maximum solubility were below 9,500 rpm and 30s, respectively The optimum ratio of water to minced muscle was 6 by evaluating breaking force, deformation and whiteness of cooked gel. The protein yield of alkaline processing is higher than that of conventional processing. In addition, the waste water of conventional processing had high solid, nitrogen content and chemical oxygen demand compare to those of acidic and alkaline processing.

산과 알칼리 수리미 제조공정을 확립하기 위하여 단백질 가용화와 회수를 위한 최적 pH, 이온강도의 영향, 균질화 조건, 마쇄육에 대한 수도수의 비 및 수율을 검토하고, 산 및 알칼리 수리미 공정에 따른 폐수의 오염 저감 효과를 수세수리미와 비교하였다. 어육 단백질을 추출하기 위한 최적 pH는 2.5와 10.5부근이었으며, 가용성 단백질의 침전 회수를 위한 최적 pH는 5.0 부근이었다. 추출 용액의 이온강도 증가는 어육 단백질의 추출량을 현저히 감소시키는 것으로 나타났고, 균질화를 위한 최적 조건은 9500 rpm 이하에서 30초였다. 원심분리 부하량과 파괴강도 및 변형값을 고려한 최적수량은 어육에 대하여 6배량이었다. 산 혹은 알칼리 공정의 수리미 수율은 수세 공정에 비하여 높았으며, 폐수의 오염 부하량은 현저히 낮은 것으로 나타났다.

Keywords

References

  1. Park JW, Morrissey MT. 2000. Manufacturing of surimi from light muscle fish. In Surimi and Surimi Seafood. Park JW, ed. Marcel Dekker, New York. p 23-58.
  2. NFI. 1991. A manual of standard methods for measuring and specifying the properties of surimi. Lanier TC, Hart K, Martin RE, eds. University of North Carolina Sea Grant College Program, Raleigh, NC, USA.
  3. Shimizu Y, Toyohara H, Lanier TC. 1992. Surimi production from fatty and dark-fleshed fish species. In Surimi Technology. Lanier TC, Lee CM, eds. Marcel Dekker, New York. p 181-207.
  4. Akahane T. 1988. Product development with surimi from fatty species for the US food supply. In Proceedings of a national technical conference of fatty fish utilization: Upgrading from feed to food. Raleigh, NC. p 265-276.
  5. Nonaka N, Hirata F, Saeki H, Sasamoto Y.1989. Manufacture of highly nutritional fish meat for food stuff from sardine. Nippon Suisan Gakkaishi 55: 1575-1581. https://doi.org/10.2331/suisan.55.1575
  6. Stefannson G, Hultin O. 1994. On the solubility of cod muscle proteins in water. J Agric Food Chem 42: 2656-2664. https://doi.org/10.1021/jf00048a002
  7. Lin TM, Park JW. 1996. Extraction of proteins from Pacific whiting mince at various washing conditions. J Food Sci 61: 432-438. https://doi.org/10.1111/j.1365-2621.1996.tb14210.x
  8. Lin TM, Park JW, Morrissey MT. 1995. Recovered protein and reconditioned water from surimi processing waste. J Food Sci 60: 4-9.
  9. Park JW. 2001. New developments in surimi and surimi seafood. Abstract No Th01-1 presented at of 11th World Congress of Food Science and Technology. Seoul, Korea.
  10. Choi YJ, Park JW. 2002. Acid-aided protein recovery from enzyme-rich Pacific whiting. J Food Sci 67: 2962-2969. https://doi.org/10.1111/j.1365-2621.2002.tb08846.x
  11. Morrissey MT, Park JW, Huang L. 2000. Surimi processing waste. In Surimi and Surimi Seafood. Park JW, ed. Marcel Dekker, New York. p 127-166.
  12. Hultin HO, Kelleher SD. 2000. Surimi processing from dark muscle fish. In Surimi and Surimi Seafood. Park JW, ed. Marcel Dekker, New York. p 59-78.
  13. Choi YJ, Park JW. 2000. Feasibility study of new acid-aided surimi processing methods for enzyme-laden Pacific whiting. Abstract No 51A-4 presented at 2000 Annual Meeting of the Institute of Food Technologist. Dallas, TX, USA.
  14. Kim YS, Park JW, Choi YJ. 2002. Physicochemical characteristics of fish proteins treated at various pH conditions. Abstract No of 56-4 at presented 2002 Annual Meeting of the Institute of Food Technologist. Anaheim, CA, USA.
  15. Undeland I, Kelleher SD, Hultin HO. 2002. Recovery of functional proteins from herring (Clupea harengus) light muscle by an acid or alkaline solubilization process. J Agric Food Chem 50: 7371-7379. https://doi.org/10.1021/jf020199u
  16. Umemoto S. 1966. A modified method for estimation of fish muscle protein by Biuret method. Nippon Suisan Gakkaishi 32: 427-435. https://doi.org/10.2331/suisan.32.427
  17. Okada M. 1964. Effect of washing on the jelly forming ability of fish meat. Nippon Suisan Gakkaishi 30: 255-261. https://doi.org/10.2331/suisan.30.255
  18. Park JW. 1994. Functional protein additives in surimi gels. J Food Sci 59: 525-527
  19. 秦忠夫, 林力丸. 1971. アミノ酸. クンパク質の分析. 講談社, 東京. p 2-7.
  20. 김용술. 1994. 수질분석. 통영수산전문대학 출판부, 통영. p 174-177.
  21. JMP. 2002. Statistics and graphics guide. Version 5.0, SAS Institute, Cary, NC. p 179-209.
  22. Suzuki T. 1981. Fish and krill protein: Processing technology. Applied Science Publishers Ltd, London. p 5-61.
  23. Sikorski ZE, Pan BS, Shahidi F. 1994. Seafood Protein. Chapman & Hall, New York. p 13-57.
  24. Dagher SM, Hultin HO, Liang Y. 2000. Solubility of cod muscle myofibrillar proteins at alkaline pH. J Aquatic Food Product Technol 9: 49-59. https://doi.org/10.1300/J030v09n04_06
  25. Chang H-S, Feng Y, Hultin HO. 2001. Role of pH in gel formation of washed chicken muscle at low ionic strength. J Food Biochemistry 25: 439-457. https://doi.org/10.1111/j.1745-4514.2001.tb00751.x
  26. Dewitt CAM, Gomez G, James JM. 2002. Protein extraction from beef heart using acid solubilization. J Food Sci 67: 3335-3341. https://doi.org/10.1111/j.1365-2621.2002.tb09588.x

Cited by

  1. Effects of pH Adjustment and Sodium Chloride Addition on Quality Characteristics of Surimi Using Pork Leg vol.27, pp.1, 2007, https://doi.org/10.5851/kosfa.2007.27.1.35
  2. Biochemical Properties of Pelagic Fish Proteins as Affected by Isolation Methods and Gel Properties by Heating Methods vol.21, pp.4, 2012, https://doi.org/10.1080/10498850.2011.594977
  3. Effect of Cordyceps ochraceostromat, Silkworm Cocoon, and Conjugated Linoleic Acid on the Quality and Storage Characteristics of Pork Sausage Manufactured by MDCM (Mechanically Deboned Chicken Meat) Recovered Protein vol.30, pp.2, 2010, https://doi.org/10.5851/kosfa.2010.30.2.243
  4. Alternative Techniques for Producing a Quality Surimi and Kamaboko from Common Carp (Cyprinus carpio) vol.73, pp.9, 2008, https://doi.org/10.1111/j.1750-3841.2008.00937.x
  5. Enzymatic Hydrolysis of Recovered Protein from Frozen Small Croaker and Functional Properties of Its Hydrolysates vol.74, pp.1, 2009, https://doi.org/10.1111/j.1750-3841.2008.00988.x
  6. Quality Properties of Gouda Cheese Added with Fish Surimi vol.54, pp.1, 2012, https://doi.org/10.5187/JAST.2012.54.1.23
  7. Protein Recovery of Tilapia Frame By-Products by pH-Shift Method vol.22, pp.2, 2013, https://doi.org/10.1080/10498850.2011.629077
  8. Contribution of Sarcoplasmic Proteins to Myofibrillar Proteins Gelation vol.77, pp.2, 2012, https://doi.org/10.1111/j.1750-3841.2011.02521.x
  9. Optimum Formulation of Starch and Non-muscle Protein for Alkali Surimi Gel from Frozen White Croaker vol.32, pp.7, 2003, https://doi.org/10.3746/jkfn.2003.32.7.1026
  10. Physico-chemical and Sensory Characteristics of Chicken Breast Surimi with Washing and the Addition of Sodium Chloride vol.27, pp.2, 2007, https://doi.org/10.5851/kosfa.2007.27.2.142
  11. Comparison of Textural Properties of Crab-flavored Sausage with Different Proportions of Chicken Meat vol.28, pp.4, 2008, https://doi.org/10.5851/kosfa.2008.28.4.395
  12. The Acid and Alkaline Solubilization Process for the Isolation of Muscle Proteins: State of the Art vol.2, pp.1, 2009, https://doi.org/10.1007/s11947-008-0088-4
  13. Comparison of functional properties and SDS-PAGE patterns between fish protein isolate and surimi produced from silver carp vol.235, pp.1, 2012, https://doi.org/10.1007/s00217-012-1721-z
  14. Acid and alkaline solubilization (pH shift) process: a better approach for the utilization of fish processing waste and by-products vol.25, pp.19, 2018, https://doi.org/10.1007/s11356-018-2319-1
  15. 기능성 어육단백질의 젤화 특성과 산업적 응용-1. 가열변성 중 화학결합에 미치는 pH의 영향 vol.33, pp.10, 2003, https://doi.org/10.3746/jkfn.2004.33.10.1668
  16. 기능성 어육단백질의 젤화 특성과 산업적 응용-2. 알칼리 공정으로 회수한 어육, 닭고기 가슴살 및 돼지 후지 육 기능성 단백질 젤의 특성과 최적화 vol.33, pp.10, 2003, https://doi.org/10.3746/jkfn.2004.33.10.1676
  17. 분쇄닭가슴살의 수세 방법과 pH 조절 수준에 따른 Surimi의 이화학적 특성 vol.47, pp.6, 2003, https://doi.org/10.5187/jast.2005.47.6.1059
  18. 분쇄닭가슴살의 수세 방법과 pH 조절 수준에 따른 Surimi의 이화학적 특성 vol.47, pp.6, 2003, https://doi.org/10.5187/jast.2005.47.6.1059
  19. 건조 어육 단백질 분말의 식품학적 기능성 vol.35, pp.10, 2006, https://doi.org/10.3746/jkfn.2006.35.10.1394
  20. 어육 단백질 회수를 위한 알칼리 Pilot 공정과 회수 단백질의 특성 vol.35, pp.8, 2003, https://doi.org/10.3746/jkfn.2006.35.8.1045
  21. 돈육 뒷다리부위와 닭가슴살을 활용하여 제조한 수리미의 특성에 미치는 pH 조절의 영향 vol.17, pp.5, 2003, https://doi.org/10.5352/jls.2007.17.5.728
  22. 명태, 폐계가슴살 및 기계발골계육을 활용한 수리미의 품질 특성 vol.49, pp.3, 2007, https://doi.org/10.5187/jast.2007.49.3.395
  23. 알칼리 처리하여 회수한 냉동깡치 어육 단백질의 Lysinoalanine 함량 vol.40, pp.6, 2003, https://doi.org/10.5657/kfas.2007.40.6.337
  24. Quality Characteristics of Chicken Breast Surimi as Affected by Water Washing Time and pH Adjustment vol.21, pp.3, 2003, https://doi.org/10.5713/ajas.2008.70424
  25. Effects of Number of Washes and pH Adjustment on Characteristics of Surimi-like Materials from Pork Leg Muscle vol.22, pp.4, 2009, https://doi.org/10.5713/ajas.2009.80462
  26. 폐계가슴살 회수단백질을 활용한 돈육소시지의 품질 특성에 영향하는 동충하초, 누에고치 및 Conjugated Linoleic Acid (CLA) 첨가 효과 vol.52, pp.2, 2003, https://doi.org/10.5187/jast.2010.52.2.131
  27. Physicochemical properties of sausage manufactured with carp (Carassius carassius) muscle and pork vol.62, pp.6, 2003, https://doi.org/10.5187/jast.2020.62.6.903
  28. Effect of potato starch on suitability for 3D printing in golden threadfin bream (Nemipterus virgatus) surimi mixture preparation vol.64, pp.4, 2003, https://doi.org/10.3839/jabc.2021.056