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ON RULED SURFACES IN MINKOWSKI SPACES

DonG-So0o KiMm, YouNG Ho KiM AND DAE WON YOON

ABSTRACT. In this paper, we study ruled surfaces in Minkowski
space, which admit 1-type Gauss map. In particular, non-cylindric
-al ruled surfaces with finite type Gauss map are of k-type (k > 2).

1. Introduction

Submanifolds of finite type in Euclidean or pseudo-Euclidean space
were introduced in late 1970’s ([5]). Since then, many works have been
achieved in this regard. Moreover, the notion of finite type can be ex-
tended to the smooth maps on submanifolds such as the Gauss map. By
definition, the Gauss map G on a submanifold M in a pseudo-Euclidean
space ET" with signature (s, m —s) is of finite type if G' can be expressed
as a finite sum of eigenvectors of the Laplacian A of M, that is,

G=Gy+G1+Ga+ -+ Gy,

where Gy is a constant map, G, ..., Gy non-constant maps such that
AG; = MG, € Ryi = 1,2,... k. If Ay, Ag,..., A, are different, then
G is said to be of k- type. In particular, if one of A1, Ag,..., A; is zero,
then it is called the null &-type.

The authors studied ruled surfaces over non-null base curve in Minkow
-ski space with finite type Gauss map ([8, 9, 10]) and classified null scrolls
with 1-type Gauss map which are called the extended B-scrolls ([10]).

In this article, we improve some results on ruled surfaces in an m-
dimensional Minkowski space E7* with finite type Gauss map. Through-
out this paper, we assume that all objects are smooth and all surfaces
are connected unless stated otherwise.
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2. Preliminaries

Let ET* be an m-dimensional pseudo-Euclidean space with signature
(s,m — s). Then the metric tensor § in E7* has the form

de + Z dz?,

i=s+1

where (z1,22,...,2Zm,) is a standard rectangular coordinate system in
ET*. In particular, for m > 2, ET" is called a Minkowski m-space.

Let x : M — EI* be a isometric immersion of an oriented n-
dimensional pseudo-Riemannian submanifold M into E7*.
From now on, a submanifold in E7* always means pseudo-Riemannian
unless stated otherwise.

Let G(n, m) be the Grassmannian manifold consisting of all oriented
n-planes through the origin of E™ and A" E™ the vector space deter-

mined by the exterior product of n vectors in ET*. Let ej,eq,...,em
be an adapted local orthogonal frame in EJ* such that e, ez,..., e, are
tangent to M and ent1,€n42,-..,6m normal to M. The map G : M —

G(n,m) defined by G(p) = (e1 Nex A--- A ey)(p) is called the Gauss
map of M that is a smooth map which carries a point p in M into
the oriented n-plane in E7* obtained from the parallel translation of the
tangent space of M at p in E".

For two vectors e;, A---Ae;, and fj; A--- A f; of EYY, we can define
an indefinite inner product (,) by

(2'1) <ei1 ARRRRA eim’fjl ARRRNA fjm) = det(<eil’fjk>)

on G(n,m). Then, A" E™ can be viewed as a pseudo-Euclidean space
Ef for some positive integer k where N = (') and G(n,m) lies in a
unit pseudo-hypersphere S ~*(1) C EY.

Let {z1,22, -+ ,2,} be a local coordinate system of M. For the
components g;; of the pseudo-Riemannian metric (,) on M we denote
by (g%) (resp. G) the inverse matrix (resp. the determinant) of the
matrix (g;;). As is well known, the Laplacian A on M is given by

(2.2) = V1lg ” )

e

Now, we define a ruled surface M in E7*. Let I and J be open intervals
containing 0 in the real line R. Let oo = a(s) be a curve on in E7* defined
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on J and 8 = [3(s) a transversal vector field along a. So we have the
parametrization for M

(2.3) r=x(s,t) =a(s)+tB(s), seJ, tel.

We call o the base curve and § the director curve. In particular, if 8
is constant, the ruled surface is said to be cylindrical, and if it is not
s0, it is called non-cylindrical. In this paper, we consider that the base
curve « is space-like or time-like. In the case, the director curve 8 can
be naturally chosen so that it is orthogonal to a. Furthermore, we have
ruled surfaces of five different kinds according to the character of the
base curve a and the director curve 3 as follows: If the base curve a
is space-like or time-like, then the ruled surface M is said to be of type
M, or type M_, respectively. Also, the ruled surface of type M, can
be divided into three types. In the case that 8 is space-like, it is said
to be of type M. _}, or M i if B’ is non-null or null, respectively. When
B is time-like, 5’ must be space-like according to the causal character.
In this case, M said to be of type Mi On the other hand, for the
ruled surface of type M_, it is also said to be of type M! or M2 if g
is non-null or null, respectively. Note that in the case of type M_ the
director curve 3 is always space-like. The ruled surface of type M}L or
M2 (resp. M3, ML or M2) is clearly space-like (resp. time-like)([8]).

3. Main results

Let the Gauss map G of the ruled surface M in ET" is of 1-type. Then,
as is given [4] and [5], there exists a real number A such that

(3.1) A’G +)MAG =0.

THEOREM 3.1. There is no non-cylindrical ruled surfaces over a non-
null base curve with 1-type Gauss map.

PROOF. Let M be a non-cylindrical ruled surface in E7* of one of
three types M}, M? or M!. According to Theorem 3.2 in [8], it is
impossible for G to be of 1-type.

Let M be a non-cylindrical ruled surface of type M2 or M2. The
parametrization for M is given by

z(s,t) = afs) +tB(s)
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such that (3,8) =1, (o/,8) =0, (d/,a')=-¢e1(==1)and F is null
It is easy to get the Gauss map of the surface M as

6= s
Define functions ¢ and u by
g =|lzs)]? = ealms,zs),  u={(d,5),
which give
(3.2) g=ea(2ut+e1), G= é—(A—l—tB),

where we put A = o/ A8 and B = ' A 8 and the region of ¢ runs so
that ¢ > 0. By the straightforward computation, we easily have the
Laplacian A of M in the form

1180 18 119¢ 8 92
3 e SR Y Gt ST
(3:3) A eal 2q28583+q832) (2q8t8t+8t2)
On the other hand, we can obtain the following lemma.

LEMMA. If P is a polynomial in t with functions in s as coefficients
and deg(P) = d, then A(—g(mi)) = E;};‘gP(t) where P(t) is a polynomial
in t with functions in s as coefficients and deg(P) < d + 2.

For the Gauss map G, we have by Lemma

Gi(t G,

(3.4) AG = ——%—(—), .LATG = I—(Q, deg(G,(t)) <1+ 2r
g3t g3

where G1(t),- -+, G.(t) are polynomials in ¢ as coeflicients.

We now consider an open subset i = {p € M|(u?)'(p) # 0}. Suppose
that U is not empty. Then, the above lemma gives AG = 0 by the
argument of degree of polynomials in ¢ on U.

Using (3.2) and (3.3), we can obtain by a direct computation

AG =(—2u2q72 + u"tq™? — 4e4u*t?q3)G

(3.5
) +q 3 {equBq + 3u't(A +tB') — es(A” +tB")q)}.
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By using (3.4) and (3.5) we have the following equations:

(3.6) 2u’B" — 3uu'B' 4+ 2u?B —wu"B =0,

4ut A" — bun’ A — 2uu’ A+ 42 A

3.7
(37) +4euB” —361u'B' + 4B =0,

(3.8) de1uA” —3euw' A + 4uPA — e A+ B —26,u’B =0,

(3.9) A" 4 2e1u*A —uB = 0.
From (3.5)-(3.9), we can eliminate A”, B”, A’ and B’ so that
(3.10) 2¢1uu?A = (u'? — uu”)B,

from which, the basic properties of 3 give o = pB’ for some function p
on U. It is a contradiction. Thus, the open subset U/ is empty, that is,
u is constant. Suppose u # 0. (3.6)-(3.9) imply that ud — 1/2¢;B =0,
which gives ua’ = 1/2¢:3, a contradiction. Thus, u is identically zero
on M.

Let M be a surface of type M?2. It is impossible because there is no
time-like vector orthogonal to a null vector in Minkowski space.

If M is a surface of type Mi, then it is easily seen that M is flat
space-like. Since the Gauss map G is of 1-type and the function u = 0,

we have ~
AG+ MG+ C =0,

in other words,

—(A" +tB")y=XA+tB)+C
for some constant vector C, from which,
(3.11) A'=-XA-C, C=-)\B.

On the other hand, since 8’ is a null vector field, B is a null vector field.
So, B” = —AB implies (6", 3") = 0.

Suppose 3" is a null vector field. By the causal character of 3,
B’ = pB' for some function 5. Therefore, 8 = F(s)N for some null
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constant vector N, which is a contradiction. Hence, the vector field 3"
is identically zero on M. Thus, the vector field 3 is given by

B(s) =sD+E

for some null constant vector D and a unit constant space-like vector E
such that (D, E) = 0.
From the first equation of (3.11), we get

(sa’"(s) +3a"(s) + Asa’(s) + A&/ (s)) AD
+(@""(s) + A" (s)) ANE =0,

from which, A = 0 and thus Mi must be of null 1-type, in other words,
AG = 0 is satisfied. In turn, the base curve « is a straight line with
a(s) = sFF for some constant space-like unit vector F up to congruence.
Since (¢, B) = 0, FF is orthogonal to D and E respectively. Consequently,
M2 can be parametrized by z(s, t) = (st, st, t, s) in Ef which is isometric
to a Euclidean plane which is cylindrical, a contradiction. O

Therefore, by combining the result of [9] and above, we have

COROLLARY 3.2. Let M be a non-cylindrical ruled surface over non-
null base curve in E* with k-type Gauss map. Then, it is of type M2
and k > 2.

REMARK.([10]) There are abundant examples of flat non-cylindrical
M2 -type ruled surfaces in E{* (m > 4) with k-type Gauss map (k > 2).

EXAMPLE. Let a be a space-like curve of the form o = a(s) =
(ce®,ce®, 0, s) and [ a vector field along o such that 8 = ((s) = (s,s,1,0)
in E} where c(# 0) is a real number. Consider a ruled surface M
parametrized by z(s,t) = a(s) +t8(s) on s € I and t € J for some
open intervals I and J. Then, M is a non-cylindrical ruled surface of
type M2 and the Gauss map G of M satisfies A’G + AG =0, AG # 0.

Putting together Theorem 3.1 and Theorem in [8, 9, 10|, we get

THEOREM 3.3. Let M be a ruled surface in ET" with 1-type Gauss
map. Then, M is either cylindrical over 1-type non-null base curve or
an extended B-scroll.
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