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NECESSARY AND SUFFICIENT CONDITIONS FOR
CONVERGENCE OF ISHIKAWA ITERATIVE SCHEMES
WITH ERRORS TO ¢-HEMICONTRACTIVE MAPPINGS

ZEQING L1u, JonG Kyu KiM AND SHIN MIN KANG

ABSTRACT. The purpose of this paper is to establish the necessary
and sufficient conditions which ensure the strong convergence of the
Ishikawa iterative schemes with errors to the unique fixed point of
a ¢~hemicontractive mapping defined on a nonempty convex subset
of a normed linear space. The results of this paper extend substan-
tially most of the recent results.

1. Introduction

Let X be a normed linear space, X* its dual space and J : X — 2%
the normalized duality mapping defined by

J@)y={feX" : Relz,f) =lllfl, =zl =7}, zeX,

where (-,-) denotes the generalized duality pairing. The symbols D(T'),
R(T) and F(T) stand for the domain, the range and the set of fixed
points of T, respectively. Let us recall the following concepts due to
Chidume [4], Chidume-Osilike [9], Osilike {17], Mann [16], Ishikawa [12]
and Xu [21], respectively.

DEFINITION 1.1. Let T: D(T) € X — X be an operator.

(i) T is said to be strongly pseudocontractive if there exists ¢ > 1
such that for each z,y € D(T), there exists j(z —y) € J(x — y)
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(i)

(iii)
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satisfying
. 1 )
Re(Tz =Ty, j(z —y)) < Zllz ~yll

T is said to be strictly hemicontractive if F(T) # 0 and if there
exists t > 1 such that for each x € D(T) and g € F(T), there
exists j(z —y) € J(z — y) satisfying

Re(Ts — (s — ) < 7lle =

T is said to be ¢-strongly pseudocontractive if there exists a
strictly increasing function ¢ : [0,00) — [0,00) with ¢(0) = 0
such that for each z,y € D(T), there exists j(z —y) € J(z — y)
satisfying

Re(Tz — Ty, j(z — ) < llz = ylI* = ¢(lle — yIDllz — yl;

T is said to be ¢-hemicontractive if F(T') # 0 and if there exists
a strictly increasing function ¢ : [0,00) — [0,00) with ¢(0) =0
such that for each x € D(T') and ¢ € F(T'), there exists j(z—y) €
J(z — y) satisfying

Re(Tz — ¢,j(z = q)) < llz — qll* = ¢(llz — al)ll= — all-

Clearly, each strictly hemicontractive operator is ¢-hemicontractive. It
was shown in [9, 17] that the classes of strongly pseudocontractive (¢-
strongly pseudocontractive, resp.) operators with fixed points are proper
subclasses of the classes of strictly hemicontractive (¢-hemicontractive,
resp.) operators.

DEFINITION 1.2. Let K be a nonempty convex subset of X and let
T : K — K be an operator.

(i)

for any given zg € K the sequence {z,}52, defined by

(o= =e v
yn = (1= bp)xn + b, Ty, n 20,

is called the Ishikawa iterative sequence, where {a,}5%, and
{bn}32, are real sequences in [0,1] satisfying appropriate con-
ditions.
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(ii) if by, = 0 for all n > 0 in (i), then the sequence {z,}52 , defined
by
{ zg € K,
Tn1 = (1 = an)zn + anTxy, n >0,

is called the Mann iterative sequence.
(iii) For any given z¢ € K the sequence {z,}22, defined by

{ Tpt1 = AQnTp + b, TYn + crin,
Yn = aL Xy + U, Txy, + vy, n >0,

where {u,}>2, and {v,}5%, are arbitrary bounded sequences
in K and {an}720, {bn}7l0, {cn}no, {an}nlo, {07,}020 and
{c,}52, are real sequences in [0, 1] such that a, + b, + ¢, =
al, + b, + ¢, =1for all n > 0 is called the Ishikawa iterative
sequence with errors.

(iv) If b, = ¢}, = 0 for all n > 0 in (iii), then the sequence {z,}5%,
now defined by

{ To € K,
Tn+l = Anln + bnTxn + Crlln, n = 07
is called the Mann iterative sequence with errors.

It is clear that the Mann and Ishikawa iterative sequences are all
special cases of the Ishikawa iterative sequences with errors.

Chidume [3] established that the Mann iterative scheme can be used
to approximate the unique fixed point of a Lipshitz strongly pseudocon-
tractive operator T : X — X, where K is a nonempty bounded closed
convex subset of a L, (or [,) space with p > 2. The result of Chidume
have been generalized and extended in several directions by many au-
thors (see, [1, 2, 4-11, 14, 15, 17-21}).

The aim of this paper is to characterize conditions for the convergence
of the Ishikawa, iterative schemes with errors to the unique fixed point of
a ¢-hemicontractive mapping in a nonempty convex subset of a normed
linear space. Our results improve and generalize most results in recent
literature.

The following result plays an important role in proving our main
results.

LEMMA 1.1. ([21])) Let X be a normed linear space. Then for all
z,y € X and j(z +y) € J(z —y),

lz + ylI* < |zl + 2Re(y, j(z + v))-
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2. Main results

THEOREM 2.1. Let K be a nonempty convex subset of a normed
linear space X and let T : K — K be a uniformly continuous and
¢-hemicontractive mapping. Suppose that {u,}°2, and {v,}52, are
bounded sequences in K and {an}2q, {bn}oro, {cn}slo, {a,}22,,
{352, {c, 352, and {r,}52, are sequences in [0, 1] satisfying

(2.1) an +bp +cp=a, +b,+c,=0, n > 0;
(2.2) lim b, = lim r, = lim &), = lim ¢, = 0;
(23) Cn(l - ’r'n,) = T'nbn, n Z 0;
(2.4) > by =00,

n=0

For any zy € K, define {z,}52, inductively as follows:

2.5) { Yn = @ Tp + b, Txy, + C,Vp,

Tnt1 = GnZn + b TYn + Crn, n > 0.

Then the following conditions are equivalent:

(i) {zn}5%o converges strongly to the unique fixed point g of T}
(ii) limn_oo TYn = ¢;
(iii) {Tyn}S% is bounded.

PROOF. Set d,, = b,+c¢, and d, = b/, +c), for each n > 0. Since T is
¢-hemicontractive, it follows that F(T) is a singleton. Let F(T) = {q}
for some q € K.

Suppose that lim,_, z, = ¢. Then (2.1), (2.2), (2.5) and the uniform
continuity of T yield that

lim y, = lim [(1 — d)z, + b, Tz, + c,v,] = q,
n—00 n—0
which implies that lim,, o Ty, = ¢. Therefore {Ty,}32, is bounded.
Now suppose that {Ty,}2, is bounded. Put A = |zg — ¢|| +
sup{||Tyn — q|| : n > 0} + sup{|lun, — Tyn|l : n > 0}. Then A is bounded
by the boundedness of {u,}52 . By induction on n > 0, we show that

(2.6) len —all <4,  n20.
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Clearly (2.6) is true for n = 0. Suppose that (2.6) holds for some n > 0.
From (2.3) and (2.5), we have
[Zns1 =gl < (1 = dn)llzn — gl + dullTyn — gll + callun — Tyl
< (1 — dn)A + dn”TZ/n - CI” + 7’ndn“un - Tyn”
< (L =dn)llzo — gl + (1 = dn) sup{||Tyn — qll : n > 0}
< +dn/|Tyn — gl + (1 = dn) sup{[|un — Tynl| : n = 0}
+ dn|lun — Tyall
< A.
That is, (2.6) holds for all n > 0. Since T is uniformly continuous and

{lle — gl1}52 is bounded, {|I T, — qll}32o and {[lyn — g 132, are also
bounded. Thus there is a constant D > 0 satisfying

sup{||zn — gl |1Tzxn — qll; lyn — all, I Ty — all,

2.7
(21) Junll oal s 1> 0} < D.

Let s, = ||Tyn — T'Tp41|| for each n > 0. The uniform continuity of T'
ensures that

(2.8) lim s, = 0,

because
lyn = Znt1ll £ dnllzn ~ Tynll + dpllzn — T2nll + cnlltn — Tynll
+ & ||vn — Tz, |
<2D(d,+d, +c, + )
— 0

as n — 00. By virtue of Lemma 1.1, (2.1), (2.5) and (2.7), we infer that

241 = gl = (1 = dn)(Zn — @) + dn(Tyn — @) + cnlun — Tyn)||

< (1= dn)?llzn —glf?
+2d,Re(Ty, — q,5(Xns1 — q)) +4Dcy,

< (1=dn)?flzn — gff?
+2d, Re(Tyn — T2ps1, 5 (Tns1 — @) + 2dn)|Zni1 — qlf
= 2dnd(|lzn+1 — glDllzns1 — gll + 4Dcy

< (1= dn)?llZn — qlf* + 2Ddns, + 2dn |nt1 — g
= 2dné(||zn+1 — glDllznt1 — gll +4Dcy
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for any n > 0. (2.2) and (2.3) mean that there exists a positive integer
No such that d, < 3 for each n > Np. It follows from (2.2), (2.3) and
(2.7)-(2.9) that for each n > Ny,

(1-

)2 2Dd,, s, + 4Dcy,

d
—gll2 < Ao a2
2d
- 2 b(lnss = ) s =

dn(D?d,, + 2Dsy, +4Dry,)

<z — Q||2 +

(2.10) .y 1 —2d,
-1z ;d ¢(llznt1 — al)llznsr — 4ll
dnt
< _ 2 ntn
< llzn — gl + 1= 24,
2d,,
— 1 —ag. PUlents = adllzntr — dll,
where
(2.11) tn = D*d,, + 2Ds,, +4Dr, — 0

as n — oo. Let 7 = inf{||zn+1 — ¢|| : » > 0}. We claim that r = 0.
Otherwise 7 > 0. Thus (2.11) implies that there exists a positive integer
N1 > Ny such that t, < ¢(r)r for each n > Nj. In view of (2.10), we
conclude that

dn
1-—2d,’

|zn+1 = all* < llzn — qll* = o(r)r n 2 N,

which implies that

o) S dn < law, —al.

n=N1

which contradicts to (2.4). Therefore » = 0. Thus there exists a subse-
quence {Z,,+1}52, of {z,}32, such that

1—00



Necessary and sufficient conditions for convergence 257

Let € > 0 be a fixed number. By virtue of (2.11) and (2.12), we can
select a positive integer ig > N7 such that

(2.13) |Zni, +1 —all <&, tn < @le)e, n > ng.
Let p = n;,. By induction, we show that
(2.14) |Zp+m — qll <, m > 1.

Observe that (2.13) means that (2.14) is true for m = 1. Suppose that
(2.14) is true for some m > 1. If ||zptm+1 — gl > €, by (2.10) and (2.13)
we know that

e2 < || pams1 — |
d t
< 112 p+mip+m
e e

_ 2d10+m
1—2dpim
< 82 + dp+m¢(5)€ _ 2dp+m¢(5)€
1 —2dpt+m 1 —2dpym

(| zp4mr1 = @D Tprms1 — qll

< €2,

which is impossible. Hence ||Zp4+m+1 — €]] < €. That is, (2.14) holds for
all m > 1. Thus (2.14) ensures that lim,,_.. 2, = ¢. This completes the
proof. O

REMARK 2.1. Theorem 2.1 extends, improves and unifies Theorem
3.4 in [1], Theorem 3.4 in [2], Theorem in [3], Theorem 2 in [4], Theorem
2 in [5], Theorem 4 in [6], Theorem 4 and Theorem 13 in [7], Theorem 1
in [8], Theorem 2 in [9], Theorem 4 in [10], Theorem 1 in [11}, Theorem
1 in [15], Theorem 2 in [18] and Theorem 4 in [19] in the following
directions:

(a) The Mann iterative schemes in [3, 4, 10, 15] and the Ishikawa
iterative schemes in [1, 2, 5-7, 9, 11, 18, 19] are replaced by the
more general Ishikawa iterative schemes with errors;

(b) The Lipschitz strongly pseudocontractive mappings in [3-7, 9, 10,
15, 18, 19] and the uniformly continuous and strongly pseudo-
contractive mappings in [1, 2, 7, 8, 11] are replaced by the more
general uniformly continuous and ¢-hemicontractive mappings;
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(c) Theorem 2.1 holds in arbitrary normed linear spaces whereas the
results of [1-12, 15, 18, 19] have been proved in the restricted
in L, (or l,) spaces, g-uniformly smooth Banach spaces, real
uniformly smooth Banach spaces, real smooth Banach spaces,
real Banach spaces of type (U, A\, m+ 1, m) and Banach spaces;

(d) The assumptions a, < B, in [5, 7] and Y o> 5 omb(oy,) < oo in
[5] are superfluous;

(e) The boundedness requirement imposed on {T'y, }52, in Theorem
2.1 is weaker than the boundedness assumption of subsets K in
[1-11, 15, 19].

REMARK 2.2. The following example proves that Theorem 2.1 ex-
tends substantially the corresponding results in [1-11, 15, 18, 19].

EXAMPLE 2.1. Let X = (—o00, 00) with the usual norm and let K =
[0,00). Define T : K — K by Tz = 1% for all z € K. Then F(T) =

{0}, R(T) = [0, 3) and

Tz — Ty|| = ” a+ 23;)(1y+ 2y) ”

S”':U_y”7 x)?/EK'

Define ¢ : [0,00) — [0,00) by ¢(t) = Tfuiz? for any t € [0,00). Clearly
#(0) = 0, ¢(t) is strictly increasing in [0, 00) and

72
1422
z? + 73
1+ 22
= llzl? = s(llz)llzll, =zeK.

(Ta.5e) = |

Hence T is ¢-hemicontractive. Observe that for given ¢ > 1, there exists
T = % € K such that

) 1
(Tz,j(2)) > ;2]
Therefore T is not strictly hemicontractive. Set
an=1-(14n)"2—10+n)"Y by=10+n)"2, co=(1+n)""

a,=1—(1+n)"t, b, =dc, =(2+2n)7" rn:[1+(1+n)%]—1

n
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for each n > 0. Then the conditions of Theorem 2.1 are satisfied. But
Theorem 3.4 in [1], Theorem 3.4 in [2], Theorem in [3], Theorem 2 in
[4], Theorem 2 in [5], Theorem 4 in [6], Theorem 4 and Theorem 13 in
(7], Theorem 1 in [8], Theorem 2 in [9], Theorem 4 in [10], Theorem 1
in [11], Theorem 1 in [15], Theorem 2 in [18] and Theorem 4 in [19] are
not applicable since T is not strongly pseudocontractive.

Using the method of proof in Theorem 2.1, we have the following
theorem.

THEOREM 2.2. Let X, K, T, {u,}2,, {vn}2,, {z,}2, and
{yn}o2o be asin Theorem 2.1. Suppose that {a,}32, {60} 0, {cn} 0,
{al}o20, {0,352 and {c],}22, are sequences in [0, 1] satisfying (2.1),
(2.4) and

(2.15) lim b, = lim b, = lim ¢, = 0;
n—oo n—00 n—0oo
(2.16) D en < 0.
n=0

Then the conclusion of Theorem 2.1 holds.

REMARK 2.3. Theorem 2.2 generalizes Theorem 1 of Chidume [8]
from real Banach spaces to normed linear spaces and from strongly pseu-
docontractive mappings to ¢-hemicontractive mappings.
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