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A NOTE ON SYMMETRIC DIFFERENCES
OF ORTHOMODULAR LATTICES

EUNsSOON Park, M1 M1 KiMm, AND JIN YOUNG CHUNG

ABSTRACT. There exist two distinct symmetric differences in a non
Boolean orthomodular lattice. Let L be an orthomodular lattice.
Then L is a Boolean algebra if and only if one symmetric difference
is equal to the other. An orthomodular lattice L is Boolean if and
only if one of two symmetric differences of L is associative.

1. Introduction

An orthocomplementation on a bounded poset P is a unary operation
’ on P which satisfies the following properties: (1) if z < y then ¢’ < &’;
(22" =z; 3) zVz' =1and z Az’ =0. We call a bounded poset P
with an orthocomplementation an orthoposet. Two elements x,y of an
orthoposet are orthogonal, written z L y, in case x < y'. An ortholattice
(abbreviated by OL) is an orthoposet which is also a lattice.

An orthomodular lattice (abbreviated by OML) is an ortholattice L
which satisfies the orthomodular law: if £ <y, theny = xV (2’ Ay) [5].
A Boolean algebra B is an ortholattice satisfying the distributive law:
zV(yAz) = (zVy)A(zVz). The commutator of a and b of an OML L
is denoted by axb, and is defined by axb = (aVb)A(aVV)A(a'VO)A(a'VY).

For elements a, b of an ortholattice, we say a commutes with b, in
symbols a Cb, if a = (a Ab)V (a AY). If L is an OML, then the relation
C is symmetric [p.22, 5.

One of our most important computational tools is the Foulis-Holland
Theorem: Let a, b, ¢ be elements in an OML L such that one of them
commutes with the other two. Then the sublattice generated by {a,b, c}
is distributive [p.25, 5].
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A ring is called Boolean if all of its elements are idempotent (i.e., a> =

a). For any x and y in a Boolean algebra B, the symmetric difference of
z and y (in symbols z+y ) is defined by z +y = (z Ay') V (z' Ay). We
can prove that the equivalence of a Boolean algebra and a Boolean ring
using the symmetric difference in a Boolean algebra [4]. In this paper,
we will study symmetric differences of orthomodular lattices.

The symmetric difference of a Boolean algebra has the following prop-

erties.

ProposiTiON 1.1. The symmetric difference of x and y, z + vy, of a

Boolean algebra B has the following properties for all z, y, z and w in

B.

(z+y)+z=z+(y+2)
(z+y)Az=(zA2)+ (yA=2)
)zVy=(z+y)+(zAy)

zAy <z+y<zVy

(10)z Ly<=z+y=2Vy

(M z<y<=z+y=2' Ay

(12) (z+y) L (zAy)

(B)z+y=(Vy A@E' VY)

(Mr=y<=z+y=0

(I z+y=y+z<=z=2

16) (z+y)Vy+z2z)=(@VyVz)A(@AyAz)

AN (z+y)Vy+2)V(iz+w)=(VyVzVu)A(zAyAzAw)
(I8 zAy=(z+y)Az=z+(zAY).

ProOF. Each simple calculation is omitted. O

2. Symmetric differences of orthomodular lattices

DErFINITION 2.1. Let L be an OML, and + be a binary operation

on L. We call + a symmetric difference on L if + satisfies the following
properties for all z,y in L : :

Nz+z=0
2)z+1 =2
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B)z+y=y+z

It is known that the OML F, generated by two distinct elements is
isomorphic to 2* x MO2 [2]. Therefore we have the following theorem.

THEOREM 2.2. There exist two distinct symmetric differences in a
non Boolean OML.

ProoOF. It is sufficient to show that there are only two polynomials
on the OML F; which satisfy (1), (2), and (3) of Definition 2.1. Indeed,
there are exactly three polynomials (x Ay') V (2’ Ay), (zVy)A(z' V)
and (VYA (zVY)AN(Z'Vy) A2’ VYY) in F> which satisfy (1) and
(3) [pp-81-85, 1]. Finally, only two polynomials (x Ay') V (z' A y) and
(xVy) A (2 Vy') satisfy (2). O

We will denote (' Ay) V{(zAy') and (zVy) A2’ Vy') withz+1 y
and x +2 y, respectively. That is,

z+Hiy = (@ Ay V(@AY)

Tz+2y = (xVy) A (@ V).

The two symmetric differences  +1 y and z +2 y of z,y in an OML L
have the following common properties.

PRroOPOSITION 2.3. Two symmetric differences x+1y and z +2y have
the following properties for all z, y in an OML and each i = 1, 2.

Dzt+iy=2"+y

2)z+,0=12z

Bzly<=z+,y=2zVy

WDzrzsy=zc+y=2ANy

(5) (z+iy) L(zAy)

(6) zny)<(z+iy) < (zVy)

(Nz+iy=2 +¢

B z+i(zAy) =zA(z'Vy)

PROOF. Each simple calculation is omitted. 0

REMARK. For z,y in an ortholattice L, if we define x +; y and x4+, 9y
to be the same as in an OML, then z +; y and x +5 y have all properties
in Definition 2.1 and Proposition 2.3.

We have the following two properties on the symmetric differences of
orthomodular lattices.
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THEOREM 2.4. Let L be an OML and + be a symmetric difference
on L. Then
(1) z4+y = z+yifandonly ifz+y = (zAy)+(2'Ay) Vz,y € L
and
(2) z4+y = z+y ifandonly ifzVy = (z+y)+(zAy) Vz,y, € L.
PROOF. (1) The conclusion follows since (z Ay') + (z' Ay) = (z A
y') V(' Ay) by (3) of Proposition 2.3.
(2) Assume that 2 +y = 242y = (zVy)A (' Vy') Vx,y € L.
Then
(Z+y)+(@Ay) = (z+29) +2(zAy)
= (((zvy A& VYY) V(zAy)))
M@ AY)V (@A) V(2 V')
= ((zvy) A (@ VYY)V (zAy)
= ((zVy V(@A) A (@' VYY)V (zAy))
= (zVy)V(zAy)
=z Vy.

Conversely, assume that xVy = (x+y)+(zAy) Vz,y € L. Then
T+2Yy
={@Vy A@' Vy)
=(@+y)+ @AM A +y)+ (@ AY))
= (z+y)VEAY) A" +y) V(&' AY)) since (z+y) L (zAy)
=(z+y)VEry)A{(z+y) V(' AY)) since z+y = 2’ +9
=(z+y)VEAry)A@+y)V((z+y) VEzAy) A AY))
=(z+y)V{(z+y) + (@A) A AY))
=(@+y)V(EVvy) Al AY))
=z+y.
a

PROPOSITION 2.5. Let L be an OML and z, y in L. Then (z+1y)" =
2 4oyandz+i1y < x40

PRrROOF. The conclusions follow by two definitions of z +; y and 2 +-
Y. O

We know that z + y = (z4+1y) Az’ +1y) andz * y = (z+29) A
(z' +2 ). Now, we are ready to prove the following theorem.
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THEOREM 2.6. Let L be an OML and x, y in L. Then the following
conditions are equivalent.

(1)zCy

2z+i1y=z+2y

B)z+2y = (zAY) +2 (@' Ay)

@ z+1y = (zVy)+1 (@AY

5)z = (xAy)+i(xAY) foreachi = 1, 2.

PrOOF. (1) <= (2)
Assume that 2 Cy. Then

r+1y = @ Ay V(zAY)
= (&' Ay) V) A (&' Ay) VYY)
= (' Vz)A(yVz) ((x’\/ YAy VY))
= (yVa)A (@' Vy)
=T+2¥.

Conversely, assume that z +1y =z +2y. Then (x Ay )V (&' Ay) =
(xVy)A(z' Vy'). Thus

zxy = (VYA VY))AE VY A(zVY)
= (zAy) V(@ AY) A VY)A(zVY))
= ((@Ay)AE VY V(@ Ay) A V) A(zVY)
= (e AY)A (2" VYY) Az VYY)
= @AY A(zVY)
= 0.

Therefore z Cy since z * y = 0 if and only if z Cy [3].
(2) = )
zHey=x+1y = (@AY)V(@ Ay) = (@ AY)+2 (2" Ay).
(2) == (4)

T+H1y =2Z+2y
= (zVy) A2 VYY)
(&' Ay)V(xAy))
E(ac’ AY)+2 (zAy)) by (3) of Proposition 2.3
(

g AYY +1(zAy) by Proposition 2.5
=(xzVvy +t1(zAy)

(1) = (5)
zCy <= z = (zAyY)V(EAY) < 2 = (zAy)+: (@ AY)
Vi =1, 2. O

The following three corollaries follow.
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COROLLARY 2.7. Let L be an OML. Then L is a Boolean algebra if
andonly ifx+1y = z+2y Vz,y € L.

PROOF. Suppose that L is a Boolean. Then z+,y =z 42y Va,y €
L by (13) of Proposition 1.1.

Conversely, if c +1y =z +2y Vz,y € L, then zCy Vz,y € L by
(1) and (2) of Theorem 2.6. This completes the proof. O

COROLLARY 2.8. Let L be an OML and z,y € L. Then z < y if
andonly ifx+1y = x+2y = 2/ Ay.

PROOF. Assume that z <y. Thenz+;y = c+2y =2 Ay by (2)
of Proposition 2.3.

Conversely, assume that ¢ +1 y = x +2 y. Then 2 Cy by Theorem
2.6. Thus y Cz since y Cz if and only if z Cy [5]. Therefore

y = (@Ay) V@' Ay)
= (zAyY)V({(VyY A VY)) for z4+1y =2 Ay
= ((ery)vzVvy) A=Ay V(@ VYy))
= xzVuy.
Thus y > . O

COROLLARY 2.9. Let L be an OML and z,y € L. Then z 1 y if
andonly ifz +1y = x+2y = V.

Proor.

zly <= z<y

Sy =y =AY by Corollary 2.8
= (z+h1Yy) = (z+2¢) =aVy
Sy =2 Hy=2Vy by Proposition 2.5

= zr+4+oy =z+1y = xVy by (1) of Proposition 2.3.

(]

We have the following equivalent condition for an ortholattice to be
an OML.

THEOREM 2.10. Let L be an ortholattice. Then L is an OML if and
only ifzVy = (x+2y) +2(x Ay) Vz,y € L
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PrOOF. Assume that L is an OML. Then

(zAy) A(zVy))

zVy = (zAy)V(
E(w’Vy’)/\(wa))
2

)
= (zAy)
= (zAy)V(z+29)
= (zAy)+2(z+29)
= (Z+29) +2 (x Ay).

V
\%
\
+

Conversely, assume tVy = (z +2y) +2 (z Ay) and < y. Then

y=zVy
=(@+2y) +2 (zAy)
=(2’ Ay)+22 by (4) and (3) of Proposition 2.3 and the Remark
=('Ay)Vz since (z' Ay) L z.

Thus z < y implies y = (2/ Ay) V z. O

The associativity of symmetric differences in an OML has the follow-
ing property [1].

THEOREM 2.11. An OML L is Boolean if and only if one of two
symmetric differences of L is associative.

PRrROOF. We know that if an OML L is Boolean then two symmetric
differences in L are associative by (5) and (13) of Proposition 1.1.

Conversely, suppose that +-; is associative in L. Then x = 2+, 0 =
e+ (y+y) = (@hiy) iy = ((2AY)VE AY)AY) V(@ Vy) AV
y NAY) = (zAy )V (yA(zVy )) since (xAy ) Cy and (z Ay) Cy. Thus
ehy = ((eAy WV (YA VY ) Ay = (@AY Ay)V (A (VY )AY) = yA(@Vy).
Hence z = (z Ay )V (yA(zVy)) = (xAy)V(xAy). This means
that  Cy. Therefore L is Boolean. Similarly , we can show that if +»
is associative, then z Cy. O
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