인간의 인지도에 근거한 질의를 통한 영상 검색의 성능 향상

Performance Improvement of Image Retrieval System by Presenting Query based on Human Perception

  • 유헌우 (연세대학교 인지과학연구소) ;
  • 장동식 (고려대학교 산업시스템정보공학과) ;
  • 오근태 (수원대학교 산업정보공학과)
  • 발행 : 2003.04.01

초록

영상간의 유사도는 일반적으로 영상으로부터 추출한 특징벡터간의 벡터공간상의 거리를 계산해서 판단한다. 그러나 이러한 특징벡터가 유사도 계산을 위한 하나의 방법이지만 항상 인간의 유사도 개념을 충실히 반영하지는 않는다. 그러므로 현존하는 대부분의 영상검색시스템들은 각 특징간의 중요도를 선정하여 유사도에 반영하는 방법을 사용하고 있다. 본 논문에서는 영상검색을 위한 새로운 초기 가중치 설정과 갱신 알고리즘을 제안한다. 이를 위해서 먼저 데이터 베이스 영상을 인간의 인지도 판단에 의해 그룹화 한 후, 내부질의와 외부질의를 수행하고, 검색된 영상중 유사한 영상이 어느 그룹에 속하는지 알아내어 각 영상별로 유사도 계산에 필요한 최적 특징 가중치를 계산한다. 2000개의 영상 데이타에 대한 실험을 통해서 제안된 알고리즘의 우수성을 보인다.

Image similarity is often decided by computing the distance between two feature vectors. Unfortunately, the feature vector cannot always reflect the notion of similarity in human perception. Therefore, most current image retrieval systems use weights measuring the importance of each feature. In this paper new initial weight selection and update rules are proposed for image retrieval purpose. In order to obtain the purpose, database images are first divided into groups based on human perception and, inner and outer query are performed, and, then, optimal feature weights for each database images are computed through searching the group where the result images among retrieved images are belong. Experimental results on 2000 images show the performance of proposed algorithm.

키워드

참고문헌

  1. N. S. Chang and K. S. Fu, 'Query-by pictorial-example,' IEEE Trans. Software Eng., vol. SE-6, no. 6, pp. 519-524, 1980 https://doi.org/10.1109/TSE.1980.230801
  2. S. K. Chang, C. W. Yan, D. C. Dimitroff and T. Arndt, 'An intelligent image database system,' IEEE Trans. Software Eng., vol. 14, no. 5, pp. 681-688, 1988 https://doi.org/10.1109/32.6147
  3. M. Li, Z. Chen, H. J. Zhang, 'Statistical correlation analysis in image retrieval,' Pattern Recognition, 2002 (To appear) https://doi.org/10.1016/S0031-3203(01)00249-7
  4. Y. Rui, T. S. Huang, M. Ortega and S. Mehrota, 'Relevance feedback : A power tool in interactive content-based image retrieval,' IEEE Trans. Circuits and Systems Video Technology, vol. 8, no. 5 pp. 644-655, 1998 https://doi.org/10.1109/76.718510
  5. S. Aksoy, R. M. Haralick, F. A. Cheikh and M. Gabbouj, 'A weighted distance approach to relevance feedback,' Proc. IAPR Int. Conf. Pattern Recognition, pp. 812-815, 2000 https://doi.org/10.1109/ICPR.2000.903041
  6. I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas and P. N. Yianilos, 'The Bayesian image retrieval system, PicHunter : theory, implementation and psycophysical experiments,' IEEE Trans. Image Process, vol. 8, no. 1, pp. 20-37, 2000 https://doi.org/10.1109/83.817596
  7. S. Sclaroff, L. Taycher and M. La Cascia, 'Image Rover: a content-based image browser for the World Wide Web,' Proc. Workshop on Content-Based Access of Image and Video Libraries, pp. 2-9, 1997 https://doi.org/10.1109/IVL.1997.629714
  8. M. E. J. Wood, N. W. Campbell and B. T. Thomas, 'Iterative refinement by relevance feedback in content-based digital image rerrieval,' Proc. Sixth ACM Multimedia Conference, pp. 13-20, 1998 https://doi.org/10.1145/290747.290750
  9. N. Vasconcelos and A. Lippman, 'Learning from user feedback in image retrieval systems,' Proc. Neural Information Processing Systems 12, pp. 977-983, 1999
  10. H. W. Yoo, D. S. Jang, S. H. Jung, J. H. Park and K. S. Song, 'Visual Information Retrieval via Content-based Approach,' Pattern Recognition, vol. 35, no. 3, pp. 749-769, 2002 https://doi.org/10.1016/S0031-3203(01)00072-3
  11. K. M. Lee and W. N. Street, 'Incremental feature weight learning and its application to a shape-based query system,' 2002(To appear) https://doi.org/10.1016/S0167-8655(01)00161-1
  12. Y. Ishikawa, R. Subramanya and C. Faloutsos, 'MindReader: query databases through multiple examples,' Proc. 24th Int. Conf. Very Large Databases, pp. 218-227, 1998
  13. Y. Lu, C. Hu, X. Zhu, H. J. Zhang and Q. Yang, 'A unified framework for semantics and feature based relevance feedback in image retrieval systems,' Proc. Eighth ACM Multimedia Conference, pp. 31-38, 2000 https://doi.org/10.1145/354384.354403
  14. R. Schettini, G. Ciocca and I. Gagliardi, 'Content-based color image retrieval with relevance feedback,' Proc. Int. Conf. Image Processing, pp. 75-79, 1999 https://doi.org/10.1109/ICIP.1999.817072
  15. C.S. Lee, W.Y. Ma and H.J. Zhang, 'Information embedding based on user's relevance feedback for image retrieval,' Proc. SPIE(Multimedia Storage and Archiving Systems IV), vol. 3846, pp. 294-304, 1999 https://doi.org/10.1117/12.360434
  16. J. Laaksonen, M. Koskela, S. Laakso and E. Oja, 'Self-Organising Maps as a Relevance Feedback Technique in Content-Based Image Retrieval,' Pattern Analysis & Applications, vol. 4, pp. 140-152, 2001 https://doi.org/10.1007/PL00014575
  17. T.P. Minka and R.W. Picard, 'Interactive learning with a society of models,' Pattern Recognition, vol. 30, pp. 565-587, 1997 https://doi.org/10.1016/S0031-3203(96)00113-6
  18. J. Peng, B. Bhaunu and S. Qing, 'Probablistic feature relevance learning for content-based image retrieval,' Computer Vision and Image Understanding, vol. 75, no. 1/2, pp. 150-164, 1999 https://doi.org/10.1006/cviu.1999.0770
  19. S. Newsam, B. Sumengen and B. S. Manjunath, 'Cateogry-Based Image Retrieval,' Proc. Int. Conf. Image Processing, Special Session on Multimedia Indexing, Browsing and Retrieval, vol. 3, pp. 596-599, 2001
  20. H.W. Yoo, S.H. Jung, D.S. Jang and Y.K. Na, 'Extraction of Major Object Features Using VQ Clustering for Content-based Image Retrieval,' Pattern Recognition, vol. 35, no. 5, pp. 1115-1126, 2002 https://doi.org/10.1016/S0031-3203(01)00105-4