DOI QR코드

DOI QR Code

Distinct Spatio-temporal Expression Patterns of Patatin Promoter-GUS Gene Fusion in Transgenic Potato Microtubers

형질전환 감자 소괴경의 발달단계에 따른 Patatin Promoter-GUS 유전자의 발현 분석

  • Youm, Jung-Won (Laboratory of Plant Cell Biotechnology, Korea Research Institute of Bioscience Biotechnology) ;
  • Kim, Mi-Sun (Laboratory of Plant Cell Biotechnology, Korea Research Institute of Bioscience Biotechnology) ;
  • Lee, Byoung-Chan (Laboratory of Plant Cell Biotechnology, Korea Research Institute of Bioscience Biotechnology) ;
  • Kang, Won-Jin (Laboratory of Plant Cell Biotechnology, Korea Research Institute of Bioscience Biotechnology) ;
  • Jeon, Jae-Heung (Laboratory of Plant Cell Biotechnology, Korea Research Institute of Bioscience Biotechnology) ;
  • Joung, Hyouk (Laboratory of Plant Cell Biotechnology, Korea Research Institute of Bioscience Biotechnology) ;
  • Kim, Hyun-Soon (Laboratory of Plant Cell Biotechnology, Korea Research Institute of Bioscience Biotechnology)
  • 염정원 (한국생명공학연구원 식물세포공학연구실) ;
  • 김미선 (한국생명공학연구원 식물세포공학연구실) ;
  • 이병찬 (한국생명공학연구원 식물세포공학연구실) ;
  • 강원진 (한국생명공학연구원 식물세포공학연구실) ;
  • 전재흥 (한국생명공학연구원 식물세포공학연구실) ;
  • 정혁 (한국생명공학연구원 식물세포공학연구실) ;
  • 김현순 (한국생명공학연구원 식물세포공학연구실)
  • Published : 2003.03.01

Abstract

This study was carried out to investigate the expression patterns of foreign gene that controlled by tuber-specific patatin promoter in transgenic potatoes. Potato leaf disc cultured in vitro were transformed by the Agrobacterium strain LBA4404 containing pBl121 or pATGUS from potato cv. Desiree. In order to select the transgenic lines, gene-specific primers deduced from the NPTII were synthesized and used for polymerase chain reaction. The down part of the putative transgenic potatoes was transplanted weekly onto sucrose-enriched medium to accelerate the microtuber formation. RNA gel blot analysis was performed on the total RNAs obtained from tuber that had been harvested at a week interval. Also, histochemical assay was observed in the explants transformed with either pBI121 or pATGUS. Results showed that the transgenic plant containing pATGUS expressed GUS transcripts mainly at the tuber, not in stem, with the highest expression level in 5 weeks-grown microtubers. In contrast to pATGUS plants, the transformed plants with pBI121 showed an equal expression pattern throughout the whole developing stages. Consistent with RNA gel blot analysis, histochemical GUS staining and enzyme activity exhibited pATGUS transcripts were at the highest level in 5 weeks cultures. From these results, we suggest that the best stage to analyze the foreign gene introduced by patatin promoter into potato plants is at 5 weeks cultures after tuber formation.

본 실험은 감자괴경에 특이적으로 나타나는 patatin promoter에 의한 외부 도입 유전자의 발현 양상을 파악하고자 수행되었다. Patatin promoter에 의하여 GUS 유전자의 발현이 조절되도록 pATGUS 벡터를 제작한 후 Agrobacterium tumefaciens LBA4404를 이용하여 감자의 잎 절편에 형질전환하였다. 대조구로 GUS 유전자의 상시발현 벡터인 pBI121을 사용하였으며, 항생제를 포함한 재분화 배지에서 개체를 유도한 결과 8주 후부터 신초를 관찰할 수 있었다. NPTII 유전자의 삽입여부를 PCR로 검정한 후, 선별된 형질전환체의 소괴경 형성을 위해 sucrose 농도를 높인 배지에서 1주일 간격으로 줄기의 하단 부분을 배양하였다. 주별로 시료를 채취한 후, RNA gel blot 분석을 해 본 결과 CaMV35S promoter에 의한 GUS 발현은 소괴경의 전단계에서 고르게 발현되는 반면, 괴경-특이적인 patatin promoter의 경우 감자 줄기에서는 관찰이 어려웠고, 주별 발현율은 1주부터 5주까지는 점점 증가하다가 그 이후부터는 점차 감소함을 알 수 있었다. 또한, GUS의 효소활성 역시 mRNA의 발현율과 비례함을 알 수 있었다. 제시된 실험결과들로 보아 감자 괴경에서의 patatin promoter에 의한 GUS 유전자의 발현은 5주경에 가장 높게 나타났으며, 이러한 결과들로 보아 patatin promoter에 의해 감자 소괴경내로 도입된 외래 유전자의 발현을 확인하기 가장 좋은 시기는 소괴경 형성 후 5주째임을 알 수 있었다.

Keywords

References

  1. Choi KW, Jeon JH, Kim HS, Joung YH, Joung H (1997) Comparison of microtuberization efficiency between normal and herbicide resistant transgenic potatoes cultured in vitro. J Kor Soc Hort Sci 38: 29-32
  2. Choi KW, Yang DC, Jeon JH, Kim HS, Joung YH, Joung H(1998) A comparison of microtuberization efficiency between normal and adenosine deaminase transgenic potato plantlets cultured in vitro. Kor J Plant Res 11: 252-256
  3. Cho MJ, Choi HW, Buchanan BB, Lemaux PG (1999) Inheritance of tissue-specific expression of barley hordein promoter-uidA fusions in transgenic barley plants. Theor Appl Genet 98: 1253-1262 https://doi.org/10.1007/s001220051191
  4. Corona V, Aracri B, Kosturkova G, Bartley GE, Pitto L, Giorgetti L, Scolnik PA, Giuliano G (2002) Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J 9: 505-512 https://doi.org/10.1046/j.1365-313X.1996.09040505.x
  5. D'Aoust MA, Nguyen-Quoc B, Le VQ, S. Le, Yelle S (1999) Upstream regulatory regions from the maize Shl promoter confer tissue-specific expression of the \beta-glucuronidase gene in tomato. Plant Cell Rep 18: 803-808 https://doi.org/10.1007/s002990050665
  6. Giuliano G, Bartley GE, Scorlnik PA(1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5: 379-387 https://doi.org/10.1105/tpc.5.4.379
  7. Herman CW, Mignery GA, Fisher LM, Park WD (1989) Analysis of a chimeric class-l patatin-GUS gene in transgenic potato plants: High-level expression in tubers and sucrose-inducible expression in cultured leaf and stem explants. Plant Mol Bioi 12: 41-50 https://doi.org/10.1007/BF00017446
  8. Hong W, Qi M, Cutler AJ (1993) A simple method of preparing plant samples for PCR. Nucl Acids Res 21: 4153-4154 https://doi.org/10.1093/nar/21.17.4153
  9. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: \beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907
  10. Jefferson R, Goldsbrogh A, Bevan M (1990) Transcriptional regulation of a patatin-1 gene in potato. Plant Mol BioI 14: 995-1006 https://doi.org/10.1007/BF00019396
  11. K$\ddot O$ster-T$\ddot O$efer M, Frommer WB, Rocha-Sosa M, Roshal S, Schell J, Willmitzer L (1989) A class II patatin promoter is under develop-mental control in both transgenic potato and tobacco plants. Mol Gen Gent 219:390-396 https://doi.org/10.1007/BF00259611
  12. Liu XY, Rocha-Sosa M, Hummel S, Willmitzer L, Frommer WB (1991) A detailed study of the regulation and evolution of the two classes of patatin genes in Solanum tuberosum L. Plant Mol BioI. 17: 1139-1154 https://doi.org/10.1007/BF00028731
  13. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Oakes JV, Shewmaker CK, Stalker DM (1991) Production of cyclodextrins, a novel carbohydrate, in the tubers of transgenic potato plants. Biotechnology 9: 982-986 https://doi.org/10.1038/nbt1091-982
  15. Sunilkumar G, Cornell JP, Smith CW, Reddy AS (2002) Cotton $\alpha$-globulin promoter: Isolation and functional characterized in transgenic cotton, Arabidopsis, and tobacco. Transgenic Res 11: 347-359 https://doi.org/10.1023/A:1016322428517

Cited by

  1. Expression of the S glycoprotein of transmissible gastroenteritis virus (TGEV) in transgenic potato and its immunogenicity in mice vol.53, pp.4, 2013, https://doi.org/10.14405/kjvr.2013.53.4.217