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THE HILBERT-KUNZ MULTIPLICITY
OF TWO-DIMENSIONAL TORIC RINGS

SANGKI CHOI AND SEOKYOUNG HoONG

ABSTRACT. Recently, K. Watanabe showed that the Hilbert-Kunz
multiplicity of a toric ring is a rational number. In this paper we
give an explicit formula to compute the Hilbert-Kunz multiplicity
of two-dimensional toric rings. This formula also shows that the
Hilbert-Kunz multiplicity of a two-dimensional non-regular toric
ring is at least 3/2.

1. Introduction

Every ring in this paper is assumed to be commutative and Noether-
ian.

Let (A,m) be a d-dimensional local ring with maximal ideal m, I
an m-primary ideal and M a finitely generated A-module. Then the
length of M/I™M can be expressed for n >> 0 as a polynomial in n
with rational coefficients and degree equal to dimAM, therefore at most
d. So we can write

d d—1
I(M/I"M) =60(n;; ) +61<n;_1 ) + .ot eq, 6, €L n>>0,
where | denotes the length. Then ey = e(I, M) is called the multiplicity
of M with respect to I. Hence

(I, M) = d -l LM

n—0oC nd

Note that e(Z, M) > 0 if and only if dim M = dim A.
By definition the multiplicity of I, e(I) is e(I, A) and the multiplicity
of A, e(A) is e(m, A).
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The notion of Hilbert-Kunz multiplicity was defined implicitly by
Kunz([3]) using the Frobenius morphism in characteristic p > 0 and it
was formulated explicitly by Monsky([4]).

DEFINITION 1.1. (Monsky, [4]) Let (A,m) be a d-dimensional local
ring of characteristic p > 0, I an m-primary ideal of A. Then the
Hilbert- Kunz multiplicity, egr (I, A) of Iis

1a(A/IP)
pde

where Il (¢ = p®) is the ideal generated by the g-th powers of all
elements of I .

By definition the Hilbert-Kunz multiplicity of A, egg(A) is egk (m,
A).

H

eHK(Iv A) = elilgo

LEMMA 1.2. (Huneke, [2]) Let (A, m) be a local ring of characteristic
p > 0. Set d =dim A, and let I an m-primary ideal. Then
e(I)

T < eHK(I) < e(I).

As an immediate consequence of this we have the following.

COROLLARY 1.3. Let (A, m) be a local ring of characteristic p > 0,
and I an m-primary ideal. If dim A = 1, then e(I) = eyk(I). In
particular, the Hilbert-Kunz multiplicity exists and is an integer.

In general, the Hilbert-Kunz multiplicity exists and is a real num-
ber([2], [4]). However, it remains open whether it is a rational number
or not. This multiplicity has many nice properties as usual multiplicity
and is proved to be more sensitive than the usual one. For example, the
Hilbert-Kunz multiplicity of 2-dimensional F-rational double point has
been calculated explicitly, and their values give more information than
the values of usual one.

THEOREM 1.4. ([7], Theorem 5.4) Let A be a 2-dimensional Cohen-
Macaulay local ring of characteristic p > 0. Then 1 < egg(4) < 2 if
and if only if A is an F-rational double point. In this case, egr(A) =
2 — 1/|G|, where G is the finite subgroup of SL(2, k) attached to the
corresponding singularity in characteristic 0.

Usually, the Hilbert-Kunz multiplicity is very difficult to compute
and has been calculated for few cases. However, the Hilbert-Kunz mul-
tiplicity is also known to be a rational number in the following cases.
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REMARK 1.5. Let (A, m) be a local ring of characteristic p > 0, and
I an m-primary ideal.

(1) If A has a regular overring B which is a finite A-module, then
r-enk(l) € Z where rankaB = r ([7]).

(2) If Ais a Cohen-Macaulay ring and has finite Cohen-Macaulay type.
That is, if the number of the isomorphism classes of indecompos-
able maximal Cohen-Macaulay module is finite. Then ey g (I) is a
rational number ([5]).

In this paper, we develop a computational method suggested in [6,
Theorem 2.1} and derive a formula for computing the Hilbert-Kunz mul-
tiplicity of two-dimensional toric rings. As a result of this, the smallest
value of the Hilbert-Kunz multiplicity of non-regular 2-dimensional toric
rings is sharply 3/2.

2. Two-dimensional toric rings

Let H C Z™ be a finitely generated additive subsemigroup of Z". We
always assume that 0 € H and H N —H = {0}.
Let k£ be a fixed ground field of characteristic p > 0 and we put

k[H] = k[t"h € H] C k[t t7Y . tnn 171,

where we denote t" = t'l“ coothn for h = (h1,..., hy) € H.

We denote M the subgroup of Z™ generated by H. We say that H is
normal if nh € H for some positive integer n and h € M then h € H.
It is known that H is normal if and only if k[H] is normal ([1]).

Recently, Watanabe has proved the Hilbert-Kunz multiplicity of a
toric (normal semigroup) ring is a rational number.

THEOREM 2.1. (Watanabe, [6]) Let k[H] be a normal semigroup ring
as above and A be the local ring of k|H| at the maximal ideal m =
{t"h € H,h # 0} and I be a monomial m-primary ideal of A. Then

enx(I) € Q.

In the proof of the above theorem, ek (I) is expressed as a finite sum
of the products, where each product is a multiplication of the number of
generators of a module and the volume of a subregion of the unit cube
{(z1,...,24) € R |0 < z; < 1fori=1,...,d}. As the subregion is
defined by linear inequalities with integer coefficients, its volume is a
rational number. Consequently, ey (7) is a rational number.

Now we focus on two dimensional toric rings and their Hilbert-Kunz
multiplicity.
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Let H be a subsemigroup of Z? generated by (a1,01),..., (an, by) with
a; > az > -+ > an. Assume that H is normal and H N —H = {0}. If
A = K[soith s02¢b2 | s0n¢0n]  with m = (s91% 592402 . s0ngbn)
then ey i (A) is the area of 2n-gon A where A satisfies the following:

1. The n + 1 points, O, Pi(a1,b1), ..., Py(an,by) are vertices of A.

2. Each side of A is parallel with either 55; or —O—]?n) .

THEOREM 2.2. Let k be a field of characteristic p > 0 and let H =
(a1, b1), (a2, b2), (a3, b3)) in Z? be normal with a; > ap > a3. If A =
k[so1th1, s02¢02 gas¢bs]  with m = (s®1#b1, 592452 593¢%2), then ey (A) is
equal to

(a1b3 - a3b1 - {(a1b3 - a3bl - azbg + agbz)(alb;g - a3b1 - a1b2 + azbl)}
arbs —azh

Proof. Let OA = (as,b3), OF = (as,b2), OB = (ar,b1). Then
egk(A) is the area of OADEF B. Consider the parallelograms OACB,
OGEH and compute the z-intercepts a1, ap and the y-intercepts 3, G2
of the straight lines in the diagram.

Qs a) X

Since the line segments OA, HD and BC are parallel we have the
following,

a1by — azh
a; =ay — Ebl b
= ay — 23p, = 2203~ asby.
b3 b3
Similarly, we calculate that
51 — a1b3 — a3b1’ ﬁQ — a1b2 - a2b1 '

a a
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Let B'(a1,0), H'(a2,0) and consider the similar triangles OBB/,
OHH'. Then

|f_ﬁ3| o -

OB @
Also .,

|AG] _ B[

|OA| B

Now the area of parallelogram DEFC is Suv, where S is the area of
parallelogram OACB. Therefore
enk(A)
= S(1—w)

= (a1b3 - a3b1){1 - (

(a1bs — agbi)?
airbz — azh
(a1b3 — asb1 — asby + agbg)(a1b3 —asb1 — a1bg + azbl)
aibz — asb; '

o1 — a2)(B1 — Be) }

a1y

a

The formula in the above theorem shows that the Hilbert-Kunz mul-
tiplicity of a toric ring is not an integer in general. Also there is a
non-regular local ring whose Hilbert-Kunz multiplicity is less than 2.

EXAMPLE 2.3. Suppose that A = k[s, st, st2]m with m = (s, st, st).
Then the area of the hexagon determined by the 3 vectors (1,0), (1,1)
and (1,2) is 3/2 as below. Hence egg(A) = 3/2.
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THEOREM 2.4. Let k be a field of characteristic p > 0 and H =
{(a1,b1), (az,b2), ..., (an,bn)) C Z? be normal with a1 > az > -+ > an.
If A = k[s®1tb, s%2¢b2 .. g9nbn]  with m = (s®%,s%2tb2 . , s tbn)
for n > 3, then ey (A) is equal to

(albn - anbl)—

Tg (aibn, — anbr — ait1bn + anbit1)(a1bn — anby — arbiz1 + ai41b1)

(aibn - anbi)

i=1

Proof. Consider the points Pj(ay,b1), Py(az,b2),...,Py(an,bs) and
dr_av)v thﬂ)raight lines that are through these points and parallel with
OP; or OP,. Call the z-intercepts of the straight lines a3, ...,a,—1 and
the y-intercepts B1,...,0p—1 withay > -+ > ap-1and B1 > -+ > Bp_1.
Then

a;bp, — anb; a1bp—i11 — An—i4101
Q= ————, Bi = .
n ax
Since ek (A) is the area of 2n-gon having P, ..., P, as vertices and
—_—

—
each side parallel with either OP; or OF,,
enk(A) = (a1bn — anb1){1 — (w1v1 + -+ + Un—20n-2)},
/81 ﬁn 1

@ — Q41
Whereul———ia dvyy= ——
(67}

Now substitute for u;, v; and a;, ;61 Then
eHK(A) (a1bn, — anb1)—
n—2

Z (aibp, — anbr — ai41bn + anbit1)(a1bn — anbry — arbir1 + az-{-lbl)
pt (aibp, — anb;)

a

In the following example we calculate the Hilbert-Kunz multiplicity
directly from the area of A or by using the formula in the above theorem.

EXAMPLE 2.5.
(1) Let A = ks, st,st?,st3,...,st™],, with m = (s,st,st?,...,st™).
Then the area in the diagram shows that
m 1 m+1
eur(d) =gt gam=g
(2) Let A = k[s%t, st, st™] , with m = (s%, st, st™). Then

@em—-1)2-2m(m—-1) 2m?-2m+1

enx (A) = om — 1 T T oam—1
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If A is unmixed, then egx(A) = 1 if and only if A is regular|8].
Also in [7, Question 1.2] Watanabe asked what is the minimal value of
egk(A) > 1 in dimension d? If d = 2, then the smallest value after
1 is 3/2 [7]. In the following theorem, it is shown that this holds for
two-dimensional toric rings.

THEOREM 2.6. Let A be a two-dimensional non-regular toric ring,
then the smallest value of e (A) is 3/2.

Proof. Note that egx(A) = 3/2 for A = k[s,st,st?] , with m =
(s, st, st?) [Example 2.3].

Let H = {(a1,b1), (ag,b2),...,(an,by)) C Z? be normal with a; >
ag > -+ > ap and A = k[H],, with m = (s*1t%,s%¢tb2 ... sontbn),
Since A is not regular n > 3. Put b; = 0 (note that the rotation of
axis does not change the area). To obtain the minimal area we may
assume that a; = 1. That is, (a1,b;) = (1,0). Since H is normal we
have by < by < --- < by,

If by > 2, then

eHK(A) > a1b2 — a2b1 > 2.
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If by = 1, then
ol by —i ba—1_3
A) > (arby — agh n U >14 2 >2
erx(A4) > (arbs 021)+§ 2l T 2,
This finishes the proof of the theorem. O

The proof of Theorem 2.6 suggests more than the smallest value
3/2. That is, if a normal subsemigroup H is minimally generated by
(al,bl), (a2, ()2), oy (ap, bn) and 0 <6y < by < -+ < by, then
b, — 1

2

COROLLARY 2.7. Let H be a normal subsemigroup of Z? minimally
generated by n vectors and A = k[H],. Then the smallest value of

. n
egk(A) is 3

enk(4) 21+

n
> —.
-2

Proof. Note that ey (A) > g as above.

Let A = k[s, st, st?, st3,.. ., st"‘l]m as in Example 2.5 (1), then
n

a

It has been suggested that the minimum value of the Hilbert-Kunz
multiplicity is a rational function of the characteristic p. However,
Watanabe’s proof shows that the value of the Hilbert-Kunz multiplicity
of a Toric ring does not depend on the characteristic. Also the Hilbert-
Kunz multiplicity of a semigroup ring(whether it is normal or not) is
always a rational number. Finally, we ask the following questions.

QUESTION 2.8. (1) Find a rational number that is Hilbert-Kunz mul-
tiplicity of 3-dimen-sional toric ring but is not Hilbert-Kunz multiplicity
of 2-dimensional toric ring.

(2) Is it true that for any rational number n/m > 3/2, there is a toric
ring A such that egx(4) = n/m?
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