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ON SET-VALUED CHOQUET INTEGRALS
AND CONVERGENCE THEOREMS (II)

LEECHAE JANG, TAEKYUN KiM, AND JONGDUEK JEON

ABSTRACT. In this paper, we consider Choquet integrals of inter-
val number-valued functions(simply, interval number-valued Cho-
quet integrals). Then, we prove a convergence theorem for interval
number-valued Choquet integrals with respect to an autocontinuous
fuzzy measure.

1. Introduction

In this paper, we consider autocontinuity fuzzy measures {12, 15] and
interval number-valued functions [16]. It is well-known that closed set-
valued functions had been used repeatedly in many papers [1, 2, 5, 6,
7, 8,9, 13, 15, 16]. Jang et al. [7, 9] studied closed set-valued Choquet
integrals and convergence theorems under some sufficient conditions, for
examples; (i) convergence theorems for monotone convergent sequences
of Choquet integrably bounded closed set-valued functions(see [7]), (ii)
convergence theorems for the upper limit and the lower limit of a se-
quence of Choquet integrably bounded closed set-valued functions (see
[9])-

The aim of this paper is to prove a convergence theorem for conver-
gent sequences of Choquet integrably bounded interval number-valued
functions in the metric Ag (see Definition 3.4). In Section 2, we list
various definitions and notations which are used in the proof of the
convergence theorem and discuss some properties of measurable inter-
val number-valued functions. In Section 3, using these definitions and
properties, we prove the convexity of interval number-valued Choquet
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integrals and discuss the concepts of convergence sequences of measur-
able interval number-valued functions in the metric Ag .

2. Definitions and preliminaries

DEFINITION 2.1. [8, 12] (1) A fuzzy measure on a measurable space

(X, A) is an extended real-valued function p : A — [0, 00] satisfying
(i) u(@) =0
(ii) p(A) < u(B), whenever A,B € A, AC B.

(2) A fuzzy measure p is said to be autocontinuous from above [resp.,
below] if u(AUBy) — p(A) [resp., u(A ~ By) — u(A)] whenever A € A,
{Bn} C A and u(B,) — 0. ‘

(3) If p is autocontinuous both from above and from below, it is said
to be autocontinuous.

Recall that a function f : X — [0,00] is said to be measurable if
{z|f(z) > a} € A for all a € (—o0,00).

DEFINITION 2.2. [12] (1) A sequence {f,} of measurable functions is
said to converge to f in measure, in symbols f,, — s f if for every € > 0,

lim pu({a](fn(2) — f(@)] > €}) = 0.

(2) A sequence {f,} of measurable functions is said to converge to f
in distribution, in symbols f,, —p f if for every € > 0,

Jim g, (r) = pys(r) ec.,

where pf(r) = p({z|f(z) > r}) and “e.c.” stands for “except at most
countably many values of r”.

DEFINITION 2.3. [10, 11, 12] (1) The Choquet integral of a measur-
able function f with respect to a fuzzy measure p is defined by

© [ ran= [ " s,

where the integral on the right-hand side is an ordinary one.

(2) A measurable function f is called integrable if the Choquet inte-
gral of f can be defined and its value is finite.

Throughout this paper, Rt will denote the interval [0, 00), I(R*) =
{la,b]la,b € Rt and a < b}. Then an element in I(R*) is called an
interval number. On the interval number set, we define; for each pair
[a,b],[c,d] € I(R") and k € R™,

[a,b] + [c,d) = [a+c,b+d],
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[a,b] - [c,d] = [a-¢,b-d],
k[a,b] = [ka, kb],
[a,b] < [e,d] if and only if a < c and b < d.

[e,
Then (I(R"),dy) is a metric space, where dy is the Hausdorff metric
defined by

dp(A, B) = max{sup inf |z — y|,sup 1nf |z — y|}
reAYEB yeB z€A

for all A, B € I(R"). By the definition of the Hausdorff metric, we have
immediately the following proposition.

PROPOSITION 2.4. For each pair [a,b],[c,d] € I(R"), dg([a, b], [c, d])
= max{|a — ¢/, |b — d|}.

Let C(R") be the class of closed subsets of R*. Throughout this
paper, we consider a closed set-valued function F : X — C(R*)\{0}
and an interval number-valued function F': X — I{R*)\{0}. We denote
that dg — lim,, oo An = A if and only if lim,,_, o dg(An, A) = 0, where
A€ I(RY) and {A,} C I(R").

DEFINITION 2.5. [1, 6, 7] A closed set-valued function F' is said to
be measurable if for each open set O C RT,

FY0) = {z € X|F(z)nO # 0} € A.

DEFINITION 2.6. [1] Let F be a closed set-valued function. A mea-
surable function f : X — R™* satisfying

f(z) € F(z) for all x € X

is called a measurable selection of F.

We say f: X — R* isin Ll(u) if and only if f is measurable and
C) [ fdu < co. We note that “z € X p — a.e.” stands for “ z € X p-
almost everywhere”. The property p(z) holds for z € X ¢ — a.e. means
that there is a measurable set A such that p(A) = 0 and the property
p(z) holds for all z € A, where A€ is the complement of A.

DEFINITION 2.7. [6, 7](1) Let F be a closed set-valued function and
A € A. The Choquet integral of F' on A is defined by

(©) /A Fdy = {(C) /A fdul f € S.(F)},

where S.(F') is the family of u — a.e. Choquet integrable selections of F,
that is,

S«(F) = {f € Li(w)| f(2) € F@) 2 € X p—ae.}.
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(2) A closed set-valued function F is said to be Choquet integrable
if (C) f Fdu # 0.

(3) A closed set-valued function F is said to be Choquet integrably
bounded if there is a function g € L(u) such that

|F(z)|l = sup |r| < g(z) for all x € X,

reF(z)

Instead of (C) [y Fdp, we will write (C) [ Fdu. Let us discuss some
basic properties of measurable closed set-valued functions. Since Rt =
[0, 00) is a complete separable metric space in the usual topology, using
Theorem 8.1.3 ([1]) and Theorem 1.0(2°) ([5]), we have the following
two theorems.

THEOREM 2.8. [1, 5] A closed set-valued function F is measurable
if and only if there exists a sequence of measurable selections { f,} of F
such that

F(z) = cl{fn(z)} for all x € X.

THEOREM 2.9. [1, 5] If F is a measurable closed set-valued function
and Choquet integrably bounded, then it is Choquet integrable.

3. Main results

In this section, we prove the convexity of interval number-valued Cho-
quet integrals and discuss the concepts of convergent sequences of mea-
surable interval number-valued functions in the metric Ag. Since (X, .A)
is a measurable space and RT is a separable metric space, Theorem
1.0(2%) ([5]) implies the following theorem. Recall that a measurable
closed set-valued function is said to be convex-valued if F(x) is convex
for all x € X and that a set A is an interval number if and only if it is
closed and convex.

THEOREM 3.1. If F is a measurable closed set-valued function and
Choquet integrably bounded, then there exists a sequence { f,} of Cho-
quet integrable functions f, : X — R* such that F(z) = cl{f,(z)} for
allz € X.

Proof. By Theorem 1.0 (2°) ([5]), there exists a sequence {f,} of
measurable functions fn, : X — R™ such that F(z) = cl{fn(z)} for all
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z € X. Since F is Choquet integrably bounded, there is a measurable
function g € L.(u) such that

|F(z)|| = sup{r|r € F(z)} < g(z), for all x € X.

Since f,(z) € F(z) forallz € X and all n = 1,2,---, fo(z) < g(z) for
all z € X. By Proposition 3.2 ([11]),

(C)/fndﬂﬁ(c)/gd,u<oo, foralln=1,2,---.

So, fn is Choquet integrable for all n = 1,2,--.. The proof is complete.
d

THEOREM 3.2. If F is a measurable closed set-valued function and
Choquet integrably bounded and if we define f*(x) = sup{r|r € F(z)}
and f.(z) = inf{r|r € F(z)} for all z € X, then f* and f, are Choquet
integrable selections of F.

Proof. Since F is Choquet integrably bounded, there exists a function
g € LL(un) such that |F(z)| < g(z) for all z € X. Theorem 3.1 implies
that there is a sequence { f,} of Choquet integrable selections of F such
that F(z) = cl{f.(z)} for all z € X. Then

f*(z) =sup{r|r € F(z)} = sup fa(z)

and
fi(z) = 1inf{r|r € F(z)} = irﬁf fa(2).

Since the supremum and the infimum of a sequence {f,} of measurable
functions are measurable, f* and f, are measurable. And also, we have

0 < fulz) < f*(z) = |F(z)|| < g(z) for all x € X.

Since g € LL(u), f* and f. belong to Ll(1). By the closedness of F'(x)
for all z € X, fu(x) € F(z) and f*(z) € F(z) for all z € X. Therefore,
f* and f, are Choquet integrable selections of F'. d

ASSUMPTION (A). For each pair f,g € S.(F), there exists h € S.(F)
such that f ~ h and (C) [ gdu = (C) [ hdp.
We consider the following classes of interval number-valued functions;
F = {F|F : X — I(R'%) is measurable and Choquet integrably
bounded} and
F1 = {F € F|F is convex — valued and satisfies the assuption(A)}.

THEOREM 3.3. If F € F1, then we have

(1) ¢F € F for all c€ R,
(2) (C) [ Fdy is convex,
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(3) (C) [ Fdp=[(C) [ fud, (C) [ f*dpl

Proof. (1) The proof of (1) is trivial.

(2) If (C) [ Fu is a single point set, then it is convex. Otherwise, let
y1,¥2 € (C) [ Fdu and y1 < y2. Then, there exist fi1, fa € Sc(F) such
that

Y1 = (C)/fldﬂ and yp = (C)/fzd,u.

Further, let y € (y1,y2) we need to a selection f € S.(F) with y =
(C) [ fdu. Since y € (y1,y2), there exists Ag € (0,1) such that y =
Moy1+(1—Ao)y2. For above two selections fi, fo € Sc(F), the assumption
(A) implies that there exists g € S.(F) such that f; ~ gand (C) [ gdu =
(C) [ f2du. We define a function f = Aof1 + (1 — Ao)g and note that
Xof1 ~ (1=Xg)g. Since F is convex, f(z) = Ao f1(z)+(1—Xo)g(z) € F(x)
for € X p-a.e. By Theorem 5.6 [11] and Proposition 3.2 (2) [11],

y = Aoy1+(1— o)y

= (© [ Xesidu+(©) [(1-0)ad

= %0(0) [ fidu+ (1 =20)(C) [ fadu

= %(0) [ fidu+ (1= 20)(C) [ adu

= (©) [2ohdu+(©) [ - Xa)gdn

= (©) [ ofi+ (1= Ao)g)du

- (©) / fdp.
Thus, we have f € S.(F) and y = (C) [ fdu € (C) [ Fdu. The proof of
(2) is complete.

(3) We note that f, < f < f* forall f € S.(F). Thus, by Proposition
3.2(2) [11],

© [ fan<(© [fan<(©) [ ran

for all f € S.(F). Theorem 3.2 implies (C) [ fudp, (C) [ f*dp € (C)
[ Fdu. By (2), (C) [ Fdu is convex in Rt and hence (C) [ Fdu =

[(C) f fudp, (C) [ f*dul. O
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We consider a function Ag on F; defined by
Ag(F,G) = sup dy(F(x),G(z))
reX

for all F,G € F;. Then, it is easily to show that Ag is a metric on Fj.

DEFINITION 3.4. Let F' € Fy. A sequence {F,} C F; converges to
F' in the metric Ag, in symbols, F, —a, F if

lim Ag(F,, F) = 0.

THEOREM 3.5 (CONVERGENCE THEOREM). Let F,G,H € F, and
{F.} be a sequence in F,. If a fuzzy measure 1 is autocontinuous and
if F, »ps F and G < F,, < H, then we have

dy — lim (C) / Fadi = (C) / Fdu.

Proof. By Proposition 2.4, dy (F,(x), F(z)) = max{|fu.(z) — fu(z)],
| fn(z)~f*(2)|} for all z € X, where fn.(z) = inf{r|r € F,(z)}, fX(z) =
sup{r|r € Fp(z)} forn =1,2,--, fi(z) = inf{r|r € F(z)}, and f*(z) =
sup{r|r € F(z)}. Since Ag(F,,F) — 0 as n — 00, Sup,cx |fax(z) —
fi(z)] — 0 and sup,cx |fi(z) — f*(z)] — 0. Given any £ > 0, there
exist two natural numbers N1, Np such that |fn.(z) — fu(z)| < € for all
n > Ny and all z € X, and |f}(z) — f*(z)| < € for all n > N and all
z € X. We put N = max{N;, No}. Thus for each n > N,

p{z| [fre(z) = fulz)] > £} = p(0) = 0
and

plal |fa(z) — f*(z)] > e} = u(@) =0.
Then, clearly we have that for arbitrary € > 0, p{z| |fas(z) — fu(z)| >
e} — 0asn — oo and p{z| |fi(z)— f*(z)] > e} — 0 asn — co. That is,
foe —um feand f - f* as n — oco. It is clearly to show that if G <
Fo < H then iy, (r) < ig,. () < pa, () and pige(r) < pigs(r) < pune(r)
for all 7 € RY, where g.(z) = inf{r|r € G(z)}, g*(z) = sup{r|r € G(z)},
h«(z) = inf{r|r € H(z)}, and h*(z) = sup{r|r € H(z)}. Since u is
autocontinuous, by Theorem 3.2 [12], we have

i (©) [ fudu = (©) [ fuwand s (©) [ = (©) [ an

n—oo

Therefore,

4a((C) [ Fudi (©) [ Fap) = maxi(©) [ = (C) [ s,
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(©) [ frdu=(€) [ rrduly 0

as 1n — o0.
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