폭약 Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)에 노출된 분해세균 Pseudomonas sp. HK-6의 세포반응과 형태변화

Cellular Responses and Morphological Changes of RDX-degrading Bacterium, Pseudomonas sp. HK-6 Exposed by Explosive Hexahydro-1,3,5-triaitro-1,3,5-triazine (RDX).

  • 장효원 (순천향대학교 생명과학부) ;
  • 강형일 (순천대학교 환경교육과) ;
  • 김치경 (충북대학교 미생물학과) ;
  • 오계헌 (순천향대학교 생명과학부)
  • 발행 : 2003.03.01

초록

환경 오염원으로서 폭약 hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)에 대한 RDX 분해세균 Pseudomonas sp. HK-6의 세포반응과 형태변화에 대하여 조사하였다. 아치사조건의 RDX농도와 노출시간에 따른 균주 HK-6의 생존율을 분석한 결과, 이 세균의 생존율은 스트레스 충격 단백질의 생성과 비례하였다. 총세포 지방산 조성분석에서 균주 HK-6는 trypticase soy agar(TSA)에서 자랄 때 보다 RDX배지에서 자랄 때 여러 가지 종류의 지방산이 생성되거나 사라지는 것이 밝혀졌다. Anti-DnaK와 anti-GroEL을 이용하여 SDS-PAGE와 Western blot을 통한 분석으로 균주 HK-6는 70 kDa DanK와 60 kDa GroEL을 포함하는 몇가지 스트레스 충격단백질을 생성하는 것으로 밝혀졌다. RDX에 노출된 HK-6배양에서 수용성 단백질 분획에 대하여 2-D PAGE를 실시하였으며, pH 3에서 pH 10 범위에서 약 300 spots가 silver로 염색된 gel상에서 관찰되었다. 그 결과, RDX에 대한 반응으로 10여개의 spots가 현저히 유도 발현되었다. RDX(0.135mM, 12시간)에 노출된 세포는 구멍이 나타나고 표면의 불규칙적인 형태 변화가 일어나 죽게되는 것이 주사 전자현미경을 통하여 관찰되었다.

The cellular responses of RDX-degrading bacterium, Pseudomonas sp. HK-6 to explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were examined. Strain HK-6 grown at different RDX concentrations was found to demonstrate the survival rate in proportional to the rate of the stress shock proteins produced in this bacterium. Analysis of total cellular fatty acid acids showed that lipids 10:0 iso and 14:1 $\omega$5c/$\omega$5t increased approx three times in strain HK-6 grown on RDX media than TSA media. SDS-PAGE and Western blot using anti-DnaK and GroEL revealed that several stress shock proteins including 70 kDa DnaK and 60 kDa CroEL were newly synthesized in strain HK-6 exposed to different RDX concentrations in exponentially growing cultures. 2-D PAGE of soluble protein fractions from the culture of HK-6 exposed to RDX demonstrated that approximately 300 spots were observed on the silver stained gel ranging from pH 3 to pH 10. As a result, 10 spots were significantly induced and expressed in response to RDX. Scanning electron microscopy fur the cells treated with 0.135 mM RDX for 12 hrs showed the presence of perforations and irregular rod shapes with wrinkled surfaces.

키워드

참고문헌

  1. Appl. Environ. Microbiol. v.61 Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX) by Stenotrophomonas malipophila PB1 Binks,P.R.;S.Nicklin,;N.C.Bruce
  2. Appl. Environ. Microbiol. v.58 Unique and over-lapping pollutant stress proteins of Escherichia Coli Blom,A.;W.Harder;A.Martin
  3. Protein methods(2nd ed.) Bollag, D. M.;M. D. Rozycki;S. J. Edelstein.
  4. Protein methods(2nd ed.) Bollag,D.M.;M.D.Rozycki;S.J.Edelstein
  5. Curr. Microbiol. v.45 Physiological and cellular responses of the 2,4-D degrading bacterium, Burkholdera cepaica YK-2, to the phenoxyherbicides 2,4-D and 2,4,5-T Cho, Y. S.;H. Y. Kahng;C. K. Kim;J. J. Kukor;K. H. Oh. https://doi.org/10.1007/s00284-002-3784-8
  6. Curr. Microbiol. v.41 Induction of stress shock proteins DnaK and GroEL by phenoxyherbicide 2,4-D in Burkholderia sp. YK-2 isolated from rice field Cho,Y.S.;S.H.Park;C.K.Kim;K.H.Oh https://doi.org/10.1007/s002840010087
  7. FEMS Microbiol. Lett. v.111 Transient repression of the symthesis of OmpF and aspartate transcabamoylase in Escherichia coli K12 as a response to pollutant stress Feber,F.;T.Egli;W.Harder https://doi.org/10.1111/j.1574-6968.1993.tb06384.x
  8. J. Gen. Microbiol. v.139 Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide Flattery-O'Brien,J.;L.P.Collinson;I.W.Dawes https://doi.org/10.1099/00221287-139-3-501
  9. Chemosphere v.32 Enhanced recovery of the explosice hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from soil: cyclodestrin versus anionic surfactants Hawari, J.;L. Paquat;E. Zhou;a. Halasz;B. Zilber. https://doi.org/10.1016/0045-6535(96)00102-6
  10. Appl. Environ. Microbiol. v.58 Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity Heipieper,H.J.;R.Diefenbach;H.Keweloh
  11. J. Microbiol. v.36 Synthesis and requirement of Escherichia coli: heat shock proteins GroEL and DnaK for survival under phenol stess conditions Jeon, T. J.;K. J. Lee.
  12. Appl. Environ, Microbiol. v.60 Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacter cloaceae from nitramine explosive contaminated soil Kitts,C.L.;D.P.Cunningham;P.J.Unkefer
  13. J. Biotechnol. v.51 Basic knowledge and perspectives of bioelemination of xenobiotic compounds Knackmuss,H.J. https://doi.org/10.1016/S0168-1656(96)01608-2
  14. J. Biol. Chem. v.193 Protein measurements with the folin phenol reagent Lowry, O. H.;N. J. Roseborough;A. L. Farr;R. J. Randall.
  15. Appl. Environ, Microbiol. v.61 Two-dimensional gel electrophoresis analysis of the response of Pseudomonas puitda KT-2442 to 2-chlorophenol Lupi,C.G.;T.Colangelo;C.A.Mason
  16. Appl. Environ, Microbiol. v.61 Close correlation between heat shock response and cytotoxicity in Neurospora crassa treated with aliphatic alcohols and phenols Meyer,U.;S.Palola;F.Fransco;R.Ludger
  17. Anal. Biochem. v.117 Silver stain for proteins in polyarcylamide gels: a modified procedure with enhanced uniform sensitivity Morrisey, J. H. https://doi.org/10.1016/0003-2697(81)90783-1
  18. J. Bacteriol. v.164 Morphological forms and viability of Campylobacter species studies by electron microscopy Ng,L.K.;R.Sherburne;D.E.Taylor;M.E.Stiles
  19. Curr. Microbiol. v.43 Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shocks Park, S. H.;K. H. Oh;C. K. Kim. https://doi.org/10.1007/s002840010283
  20. Appl. Environ, Microbiol. v.62 Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene Pinkart,H.C.;J.W.Wolfram;R.Rogers;D.C.White
  21. J. Bacteriol. v.177 Isolation and expression of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentration of aromatic hydrocarbons Ramos,J.L.;E.Duque;M.J.Huertas;A. Haidour.
  22. Biodegradation of mitroaromatic compounds Basic knowlege and perspectives on biodegradation of 2,4,6-trinitrotoluence and related nitroaromatic compounds in contaminated soil Reiger, P. G.;H.-J. Knackmuss.;Spain, J. C.(ed.)
  23. J. Bacteriol. v.174 Effects of the mumbrane action of tetralin on the functional and structural porperties of artificial and bacterial membranes Sikkema, J.;B. Poolmen;W. N. Konings;J. A. M. de Bont.