초록
Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.