라겐르 함수를 시간영역 전개함수로 이용한 자장 적분방정식의 과도 응답

Transient Response of Magnetic Field Integral Equation Using Laguerre Polynomials as Temporal Expansion Functions

  • 발행 : 2003.04.01

초록

In this Paper, we propose an accurate and stable solution of the transient electromagnetic response from three-dimensional arbitrarily shaped conducting objects by using a time domain magnetic field integral equation. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of temporal expansion functions with decaying exponential functions and Laguerre·polynomials. Since these temporal expansion functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation and converges to zero unconditionally. To show the validity of the proposed method, we solve a time domain magnetic field integral equation for three closed conducting objects and compare the results of Mie solution and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.

키워드

참고문헌

  1. S. M. Rao, Time Domain Electromagnetics, Academic Press, 1999
  2. S. M. Rao, D. R. Wilton and A. W. Glisson, 'Electromagnetic scattering by surfaces of arbitrary shape,' IEEE Trans. Antennas Propagat., vol. 30, no. 3, pp. 409-418, May 1982 https://doi.org/10.1109/TAP.1982.1142818
  3. S. M. Rao and D. R. Wilton, 'Transient scattering by conducting surfaces of arbitrary Shape,' IEEE Trans. Antennas Propagat., vol. 39, no. 1, pp. 55-61, Jan. 1991 https://doi.org/10.1109/8.64435
  4. D. A. Vechinski and S. M. Rao, 'A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape,' IEEE Trans. Antennas Propagat., vol. 40, no. 6, pp. 661-665, 1992 https://doi.org/10.1109/8.144600
  5. S. M. Rao and T. K. Sarkar, 'An alternative version of the time-domain electric field integral equation for arbitrarily shaped conductors,' IEEE Trans. Antennas Propagat., vol. 41, no. 6, pp. 831-834, 1993 https://doi.org/10.1109/8.250460
  6. S. M. Rao and T. K. Sarkar, 'An efficient method to evaluate the time-domain scattering from arbitrarily shaped conducting bodies,' Microwave Opt. Technol. Lett., vol. 17, no. 5, pp. 321-325, April 1998 https://doi.org/10.1002/(SICI)1098-2760(19980405)17:5<321::AID-MOP14>3.0.CO;2-6
  7. B. H. Jung and T. K. Sarkar, 'Time-domain electric-field integral equation with central finite difference,' Microwave Opt. Technol. Lett., vol. 31, no. 6, pp. 429-435, Dec. 2001 https://doi.org/10.1002/mop.10055
  8. B. H. Jung and T. K. Sarkar, 'Corrections to 'Time-domain electric-field integral equation with central finite difference',' Microwave Opt. Technol. Lett., vol. 33, no. 2, p. 148, April 2002 https://doi.org/10.1002/mop.10257
  9. B. H. Jung and T. K. Sarkar, 'Transient scattering from three-dimensional conducting bodies by using magnetic field integral equation,' J. of Electromagn. Waves and Appl., vol. 16, no. 1, pp. 111-128, Jan. 2002
  10. 정백호, 김채영, '자장 적분방정식을 이용한 3차원 임의 형태 도체 구조의 지연 산란 해석,' 한국통신학회논문지, 제 27권, 제 4B호, pp. 379-387, 2002. 4
  11. J. Van Bladel, Electromagnetic Fields. Hemisphere Publishing Coporation, 1985
  12. A. D. Poularikas, The Transforms and Applications Hanbook. IEEE Press, pp. 54-60, 1996
  13. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. New York: Academic Press, pp. 1037-1039, 1980