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ON LINEAR PERTURBATIONS AND
ABSOLUTE ROOT BOUND FUNCTIONALS

Jin HwaN KiMm AND YOUNG Kou PARK

ABSTRACT. We will show that any linear perturbation of polynomials that intro-
duces bounded perturbations into the roots of polynomial is some linear combination
of the derivatives of a polynomial. And we will derive an absolute root bound func-
tional which is in some sense better than the other known absolute root bound
functionals.

1. INTRODUCTION AND NOTATIONS

Let p(z) be a polynomial in the complex variable z. The first divided difference
of p(z) is denoted by p[20, z1] and defined by the relation

plzo, 21] = W‘

The n-th divided difference is defined by induction in terms of the (n—1)-th
divided difference by the formula:

P20, 21, 2] = P, o Zno2 2] = Plzo, "Z"_2’Z”‘1].
Zn — Z2n-1

In order to derive a new formula for the divided differences which is useful in
studying perturbation of roots, we need the following lemma.

Lemma 1.1.

! p(2)
D20, 21,1 2n] = 2_7rz'/r(z—zo)(z——21)'“(2—2n) dz,

where the points zg, 21,..., 2z, lie inside the contour I".

From Lemma 1.1, interchange of any two of the arguments does not alter the

value of the divided difference. Therefore p[zq, z1,. .., 2s] is a symmetric function
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(4. e., invariant under all permutations of the variables zg,...,z2, even if some of
them coincide). For n 4 1 coincident arguments zp (i. €., 21 = 20 = - -+ = 2, = 2)
we obtain the equality
1
p[zo, ‘e ,Z()] = ﬁp(n)(zo).

By Cauchy’s integral formula, we have the following estimate;

1
[p[z()a e ,Zn” S _| Sup lp(n)(z)l)
N 2eD

where D is any convex region in the complex plane C, containing zg, ..., 5.

If p(z) is a polynomial of degree n, then by Newton’s interpolation formula, p(z)
can be reconstructed uniquely from the values of the divided differences at zg, . . ., zn,
as follows:

p(2) = plzo] + pl20, 21](2 — 20) + p[20, 21, 22] (2 — 20)(2 — 21) + - - -

+ plzo, 21, -, 2n)(2 — 20)(2 — 21) - -+ (2 — Zp—1).

Notations. Let p(z) be a polynomial with degree n. We denote the set of roots of
p(z) by the finite sequence @, = {q1,...,gn} because some of roots may coincide,
the letters a, 3,7,... will denote subsequences of @, and denote by o/, 3,7/, ...
complements of these subsequences in Q. For o C @, we denote by p[a] for the
divided difference of p(z). We set, for any a C Qp,

H(z—qj) fora # @

(2 —q)% = { gj€a
1 fora = @.
Let r(2) be a polynomial of degrée <n — 1 and ¢i, ..., ¢ the roots of

B(2) =p(2) +7r(z) = (2 —q1) - (z = Gn).
We also set, for any o C @y,
) [[@-3) fora#so
(¢ - §)% =  9€a
1 fora=@.

If @. = {q1,.--,qn} is a fixed sequence of complex numbers. Then for any
subsequence {g;j,qk,q¢,...} C Qn, we shall always set j < k < £ < --- (< n)
throughout this paper. If § is a finite sequence of complex numbers, we denote
#(3) the number of terms (components) in 3.

We will now define (g, — §)” as follows:
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Let 3 € @Qn and #(8) = m < n. For any subsequence a C f, set a =

{Gay+G0syr- -} B = {qc1+ ey - C @, (remember ' is the complement of 3 in
Qr). Choose
v= {Qlequn:--ch]#(u)} cg
so that #(v) =n+ 1 — m — #(a), then we define
(@a— 0)" = (G0, = 9ejy Wiy = ey (e = ey )
sothat iy = j1,f2 =J2— 1, ..., lgp) = Jg0) — #() + 1.

Now for our work we need the new formula for the divided differences.

Theorem 1.2. Let Q, = {q1,...,9n}. Suppose that
p(z) =(z—q)(z—q2) - (2 — gn)
and
p() +r(z)=(2—q1) (2= Gn),  deg(r(z)) <n-1
Then
(i) For any subset 8 C Qn such that #(8) =m <n,
1 —d) (2 =Gy o -
T{ﬁlz%/r(z @) ()2 ) g, - > (g-9) PG

(z—q 2#aCf vCp
#(v)=n+l-m—#(a)

(if) For a given p > 0, if lg; — g;| < p for all j, then for any non-empty subset
B C Qn,

(1) Bl < Y. N ()

2#alp v’
#(v)=n+l-m—#(a)
where (o — @)y = (I9ai, = Ges, | +0) - (G ) = Gz, | +0)-
Conversely if (1) holds for all non-empty subset 8 C Qn, then there exists C(n)
depending only on n that the roots §i,...,Gn of p(z) + r(z) can be indezed in such
way that |g; —¢;| < C(n)p, j=1,...,n.

Proof. See Park [11] for details. O
Let us write down the formula r[5] for n = 4 for an example.

Ezample 1.3. For n = 4, let p(z) = (z—q1)(2 — g2)(z — g3)(2 — g4) and deg(r(z)) < 3.
Then we have the following forms.

rlg;] = (¢ — @1)(g; — @2)(a; — 3) (g5 — Ga)
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for1 <j <4

(g5, qk] = (45 — G)(g5 — Ge)(a5 — @m) + (ak — k(g5 — de)(ak — Gm)
+ (g5 — 45)(ak — Gr) (g5 — dGe)
for1<j<k<4,l#me{1,2,3,4} \ {j,k};

745, qk, 0] = (95 — G)g5 — Gm) + (& — G )(ak — Gm) + (2 — Ge){(ge — Gm)
+(g5 — @)(ak — @) + (g — 45)(qe — Ge) + (ar — ) (g — Ge)
for1<j<k<?<4, me{l,2,3,4} ~{jk t};
7(q1,92,43,94] = (@1 — @1) + (02 — G2) + (g3 — G3) + (g4 — da).
From the fact that, for 8 C Q, such that #(8) = m, r[8] has (T ) terms, we

n+l-m
obtain the following results.
Corollary 1.4. Let p(z) = (2 — z0)",7(2) be a polynomial of degree < n—1 and
p(z) = p(z) +7(z) = (2 — @) (2 —@). Ifl2o— G| < p for all j, then for
B ={z0,...,20} with #(8) = m < n, we have

) L R
Conversely if (2) holds for all #(3) # 0, then we have

- 1 .
IZO‘QJ‘|§7§'_—19 (1=12,...,n).

2. LINEAR PERTURBATIONS

In this section we will show that all linear perturbations of polynomials that
introduce bounded perturbations into the roots of p(2) are some linear combinations
of the derivatives of p(z). Let us denote by H, the linear space of all polynomials
of degree < n with complex coefficients. The following estimates are well known

results, see Taylor [12] for polynomials of several variables.

Lemma 2.1. Let p(z) be a polynomial of degree n and let d(z) = dist(z, V), the
distance from 2z € C to V = {z € C: p(z) = 0}. Then there exist constants C1(n)
and C2(n) depending only on n such that

n (k)(z) 1/k
3) Cin) < d(z) 3 2 < Cy(n).
' ,;f 0) | 2w



ON LINEAR PERTURBATIONS AND ABSOLUTE ROOT BOUND FUNCTIONALS 41

Proof. We have p(z+¢) —p(2) =Y p4 ,:p(k)(z). Hence

p(z+¢) . _ ¢ ()
Tl e

(4)

“1/k
Pick C(n) such that 337, S0 < 1 1f |¢] < Cy(n) min 1”—‘5%’ with fixed z.

Then (4) implies p(z + {) # 0. Hence

p(k)(z) ’—l/k

which proves the first part of (3).
For the second part, let |¢| < d(z). Then if g(t) = p(z + t¢) (¢t € R), we have

- -

< on
p(z) h Lk

where t; are the roots of g(t) such that ¢ > 1.
Thus |p(z + ¢)] £ 2%|p(2)| if |¢] < d(z). By Cauchy’s integral formula, we get

p®(2)] < Cz(TQ(QZ'SIf(Z)l

which completes the proof. |

Theorem 2.2, Let T : H, — H,_ be a linear operator and deg(p(z)) = n. If the
T00tS Gy, . ..,Gn Of p+ T'p are indezed so that |g; — ;| < p, 7 =1,...,n, then

n k
(5) T=Y and/da), |l <L (k=1,...,n).
k=1

Conversely, if T has the above form (5}, then for any p(z) with deg(p(2)) = n
the roots §i,...,4n of p+ Tp are indezed so that

(6) [q.’i_@[SC(n)pa j=1L...,n,

where C(n) depends only on n.

Proof. It was known (cf. Tulovsky [14]) that
n
T:Zak(d/d‘z)ka |ak] < Cpk (k: 1,...,7’1.)
k=1

for some constant C, and moreaver the coefficients cx do not depend on polynomials

p(z) with deg(p(z)) = n.
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In order to get more precise estimates for |akl, let us choose p(z) = 2™. Then we

get

n
2+ T(E") = (2= @) (2= Ga) = 2" + Y ak(d/dz)F(2").

k=1

From this equality we will get the following relation
arnfn=1) - (n—k+1)= Y (=1, -G,
<<y
where {i1,12,...,1,} is a subset of {1,2,...,n} such that i) <iy <--- <.

Now taking into account that |¢;| < p, we obtain

n!
-1 n — <k
lag|n(n—~1)---(n—k+1) < k!(n—k)!p
which gives
o
<—,k=1,...,n
lakl— (k)!’ k i 7n

To prove the converse, let d = min |z — g;|. Then there exist constants C;(n) and
j

Cs(n) depending only on n such that
(K)(2) 1/k
M (z) |V
(7) Z P | e

As the proof of (ii) in Theorem 1.2 (see Park [11, pp. 73-79]), we will use Rouche’s

theorem and

n
G = Blgj,kp)
Jj=1
with boundary T to find C(n) depending only on n. If z € T then, by (7) and

Ia]] < AR we get
ITp(2)] < logl [p9(2)] < Ip(2)] Y CH(m)k™ < |p(2)]-
j=1 Jj=1

From Rouche’s Theorem, we can see (6) holds for C(n) depending only on n. 0

For any p(z) with degree n, the set {(d/d2)*p : k =n—-m,n—-m+1,...,n}
forms a basis for H,, when m < n. Therefore we can obtain the following result.

Corollary 2.3. Let T : H, — Hp, be a linear operator with m < n. If for any p(z)
with deg(p(z)) = n, the roots g1, ...,dn of p+ Tp are indezed so that |g; — ¢;| < p,
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j=1,...,n, then

T= Y old/dz), |og|<%, j=n-—m,. ..,n

j=n—m

; d
7!

3. ABSOLUTE ROOT BOUND FUNCTIONALS

We will now show how the new formula for the divided differences leads to an
absolute root bound functional that in some sense gives better estimates than the
classical absolute root bound functionals. First of all, we will give some definitions

and well known results in this area.

Definition 3.1. For p(z) = 2" + by_12" 1 +--- + b1z + by with roots qi, ..., gn, we
define U(p) by

U(p) =mJaXIqJ'|-

= will denote the class of monic complex polynomials of degree n. A root bound for
p(z) will be a real number m such that m > U(p). A root-bound (rb) functional on
= will be a real functional M : Z — R such that

M(p) > U(p) forall p(z) € =.
A rb functional M on Z such that M(p) = M(p) whenever

p(z) =2+ b, 12"+ bz + by
p(2) =2"+cp12" 4+ azta

with |¢; | = |bj | (0 < j £ n — 1) is called an absolute rb functional on Z.

Definition 3.2. For p(2) € E and r > 0, we will denote the polynomial defined by
p"(2) = r"p(z/r). A rb functional M : E — R is called homogeneous if M(p"(z)) =
rM(p(z)) for p(z) € Z and r > 0.

Definition 3.3. M is called normal if M is a continuous rb functional and M (p"(z))
is an increasing function of r > 0 for which M (p"(2)) > inf(M(2)).

t
Mof p(¢) = inf{U(p) : p(z) € E,M(p) =t}

is called the mazimum over estimation factor. Note that if M is a homogeneous rb

functional on =, then Mof/(t) is independent of . In this case we will write Mof ;.
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Remark 3.4. Now, some results on this field will be presented without proof. For

the proofs and references, see van der Sluis [15].

(a) If p(z) = 2™ + bp—12""' + .-+ + byz + bp. Then, by Cauchy’s Theorem (cf.
Park [9]), the unique positive root zp of

2" — |bpo1]2 Tt — o = ||z = |bo| = 0

is an absolute rb functional. For any p(z)(# 2") € E, we denote the corre-
sponding zp as B(p) = zp and also define B(2™) = 0, then B is the best absolute
rb functional of all absolute rb functionals. While B is optimal, the positive
root zp of the equation 2™ — |b,—3|2"~! — -+ — |b1|z — |bo] = O cannot be easily
calculated.

(b) Let

S(p) = 2max{lbn—ll’ \% lbn-—2|v' ] "-\I/W’ ) J%Q-l.} '

Van der Sluis [15] showed that for the absolute rb functional S, S(p) < 2B(p)
for all p(z) € E and hence S is nearly optimal among all absolute rb functionals

which are well-known from the literature.

Lemma 3.5. Let B : Z — R be the absolute rb functional defined in (a) of Remark
3.4. Then the followings are hold.
(i) For any normal absolute rb functional M, we obtain Mofs(t) > Mofg(t) for
the best absolute rb functional B(p).
(it) Mofp = —,\,751—_7 ~ s ~ 1.4n, B(p) is homogeneous normal.
(iii) Mofg = 2n, S(p) is homogeneous normal.

Lemma 3.6. For any absolute rb functional M on Z and any

p(2) = 2"+ bp_12 4 iz + by £ 2,

there exists a sequence of non-negative numbers ajy, ..., a, with E;.':l a; <1 such
that ]
’ ‘bn-°j , 13
M(p) = max'{ —=» ,
27}

where the prime indicates that elements with b,,_; = 0 are skipped for determination
of the maximum.
Conversely, for each n-tuple (o;) of non-negative numbers with 3°%_; a; <1,

max’ { b }l/j

@
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gives an absolute rb functional on Z.

Let p(z) = 2" + by_12"" 1 4+ .-+ + byz + bg with roots qi,...,¢,. From Theorem
1.2, if fbn—j| < (?)p7 for all j, then we get the estimate |g;| < '\‘_/g——l’ for all j. Note
that 2™p(z) = 2™ (2" +b,_ 12"+ -+ b1 2+ bp) has the same roots as p(z) except 0.

So,
pusl < ("5

and

' 3t bn—jl .
n+m)ntm-1)-(ntm-j+1) =
Set t = nn + m. Then
P> 3!bn—j
V2-17 (WV2-1)3/tt-1)---(t—j+1)

By using L’hopital’s rule, we conclude that all roots of p(z) = 2™ + b,_12"" ! +

o+ b1z + b lie in
12 |_ln21<g< i/] [brj.

Now the above inequality, Remark 3.4 and Lemmas 3.5-3.6 suggest a simpler

absolute rb functional. Namely, take ay as follows; a; = In2, ag = Q%ZZ, o =
(1“2) for j > 3. Then we can see that ) ;o ar < 1. Therefore we have the
following result.

Theorem 3.7. For p(z) = 2" +bp-12"" + - +biz+bg, if [ : = — R is defined by
19) = 5 max { I, /b2l 28/ sl 2/l

then I is an absolufe rb functional.

Now we are going to show that our absolute rb functional I gives much better
estimate than the nearly optimal S in the sense of the maximum over estimation

factor. Applying Lemmas 3.5, we obtain the following results.
Theorem 3.8. Forp(z) = 2" +b,_12" 4+ -+ biz+bg, if I : E — R is defined by
1
1(p) = 5 max { [bn-1, v/2ba2], 2V/nsl, ..., 2 ¥/Tool },

then we have the following properties.

1) I{p) és homaogeneous normal.
2) Mof; = {5 ~ Mofp forn < 11.
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10.

11.

12.

13.

14.

15.
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Mof = %{‘/ (3) ~ 1.59n for n < 12.
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