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TIGHTNESS OF LEVEL-WISE CONTINUOUS FUZZY
RANDOM VARIABLES'

SANG YEOL Joo!, SEUNG Soo LEE! AND YouNG Ho Yoo!

ABSTRACT

In this paper, we first obtain some characterizations of compact subsets
of the space of level-wise continuous fuzzy numbers in R by the modulus of
continuity. Using this, we establish the tightness for a sequence of level-wise
continuous fuzzy random variables.
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1. INTRODUCTION

The notion of tightness of random variables plays an important role in limit
theorems of stochastic processes and its applications. Prohorov (1956) gave the
relationships between tightness and weak convergence of probability measures on
complete separable metric spaces which include C[0, 1] and DI0, 1]. These results
can be also found in Billingsley (1968).

Since Puri and Ralescu (1986) introduced the concept of a fuzzy random
variable, there has been increasing interests in limit theorems for fuzzy random
variables because of its usefulness in several applied fields. Thus it seems to
be important that we ask how to characterize the tightness of fuzzy random
variables. Related to this subject, Joo (2003) obtained some results.

In this paper, we restrict ourselves to CF(R)-valued fuzzy random variables,
where CF(R) is the family of level-wise continuous fuzzy numbers in R. We first
present some characterizations of compact subsets of CF(R) and establish the
tightness of random elements of CF(R). Section 2 is devoted to describe some
preliminary results, and the main results are given in Section 3.
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2. PRELIMINARY RESULTS

In this section, we describe some preliminary results for fuzzy numbers. Let
R denote the real line. A fuzzy number in R is a fuzzy set 4 : R — [0,1] with the
following properties:

(1) @ is normal, i.e., there exists = € R such that 4(z) = 1;
(2) @ is upper semicontinuous;

(3) 4 is a convex fuzzy set, i.e., 4(Az + (1 — A)y) > min (4(z),d(y)) for z,y €
R and A € {0,1];

(4) supp @ = cl{z € R : i(z) > 0} is compact,

where cl(A) denote the closure of A.
We denote the family of all fuzzy numbers by F(R). For a fuzzy set @, the
a-level set of u is defined by

. {z:a(z) >a}, f0<a<l,
Lot = - .
supp 4, ifa=0.

Then it follows that @ is a fuzzy number in R if and only if L 4 # ¢ and Lyt is
a closed bounded interval for each « € [0,1]. From this characterization of fuzzy

numbers, a fuzzy number @ is completely determined by the end points of the
L u2]

intervals Loii = [u}, u2].

THEOREM 2.1. (a) For i € F(R), let us consider u, and u2 as functions of
a € [0,1]. Then the following properties hold:

(1) u! is a bounded increasing function on [0, 1];

(2) v? is a bounded decreasing function on [0, 1];

(3) ui < uf;

(4) u! and u? are left continuous on (0,1] and right continuous at 0.

(b) If v' and v? satisfy the above (1)-(4), then there exists a unique ¥ € F(R)
such that La® = [v}, vZ] for all o € [0,1].

PROOF. See Goetschel and Voxman (1986). O
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By the above theorem, we can identify a fuzzy number @ in R with the
parameterized representation {(ul, u2) | 0 < @ < 1}, where u! and u? satisfy
(1)~(4) of Theorem 2.1.

Now, we define the metric d on F(R) by

d(i,5) = sup max (Jul — vl|, [u2 —vZ|). (2.1)
0<a<l

Also, the norm ||@|| of fuzzy number 4 is defined as
lall = d(i, 0) = max (Jug|, [ug]),

where 0 = I {0} is the indicator function of {0}. Then it is well-known that F(R)
is complete, but is not separable with respect to the metric d (see Klement et al.,
1986). Let us denote

CF(R) = {i € F(R) : u* and u* are continuous on [0, 1]}.

A fuzzy number 4 is called level-wise continuous if @ € CF(R). Then it is known
that @ € CF(R) if and only if for each 8 € (0, 1), there exist at most two different
T1,T2 € R such that 4(z)) = @(xz) = B (see Theorem 5.1 of Congxin and Ming,
1992).

THEOREM 2.2. (CF(R),d) is complete and separable.

ProOF. If {i,} is a sequence of C F(R) such that d(i,, @) for some @& € F(R),
then ul and u2 converge to u' and w? uniformly on '[0, 1], respectively. This
implies that ! and u? are continuous on [0,1] and CF(R) is a closed subspace
of F(R). Thus the completeness of CF(R) is trivial.

Now to prove the separability of CF(R), let Fy(R) be the family of fuzzy
numbers ¥ which for some positive integer k, there exist rational points ag <
ap < - <ap < b < -0 < by < b such that §(z) = j/k at £ = a; or b; for
some j and linear in between. Then Fy(R) is exactly the same as the family
of fuzzy numbers o such that for some k, v! and v? have the rational values at
a = jfk,j=0,1,...,k and linear in between. Then it is trivial that Fy(R) is
a countable subset of CF(R). Now it suffices to prove that Fy(R) is dense in
CF(R) w.r.t. the metric d.

Let & € CF(R) and € > 0 be arbitrary fixed. Since u' and u? are uniformly
continuous on [0,1], there exists § > 0 such that
€

5 i=1,2.

la — B] < & implies |u’, —ulﬁl <
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Now we choose a positive integer r such that 1/r < § and take rational points
ag < a; < - < ap < b < -+ < by < by so that lu;/T—ajl < €/2 and

Now if we define o(z) = j/r at = a; or b; for some j and linear in between,

then 0 € Fy(R). By the construction of ¥, we have for i = 1,2,

|u?

: €
[y = 5l < 3
If(j-1)/r <a<j/r then

Juby = 3] < Juy = ] + i, = 0] <

Similarly, lut, — v(] 1 /T| < €. Since v}, is a convex combination of v(] 1y/r and
v}y We obtain luf, — v%| < €. This implies d(%, %) < e. This completes the proof.

a

For 2 € CF(R) and 0 < 6 < 1, we define

73(8) = 7(@,8) = sup max (Juy —up), [u} - uj])
|la—p|<é
1 1 2 2
= { sup max (Ua+5 — Ugyy Ug — ua+5)}
0<a<1-d

1_ .1 2 2
V{max (uj —uj_s, ui_5 —ui)}.
Since u! and u? are uniformly continuous on [0, 1], we can obtain the following

lemma.
LEMMA 2.1. lims_,o73(8) = 0 for each @ € CF(R).

The following lemma implies that 73(d) is continuous in 4 for each fixed

d € (0,1].
LEMMA 2.2. |74(6) — 75(0)| < 2d(a, ).
Proor. If a,p € [0,1], then for 1 = 1,2,

a|+|uﬂ—vﬂ|+|") ‘Uﬂ|

lud, — upl < |ufy
2d(it, 0) + |v}, v’ﬁ],

<
<

which implies 7;(0) < 2d(@,9) + 73(8). Thus we have 7;(6) — 73(0) < 2d(4, ).
74(8) < 2d(@%, ). This completes the

By similar arguments, we can obtain 75(8) —
O

proof.
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Note that a continuous function ¢ : [0,00) — [0,00) is called a modulus of
continuity if ¢(0) = 0 and ¢(s) < ¢(s +¢) < ¢(s) + ¢(¢t). Thus if we define

75(0) = 0 and 74(8) = 74(1) for § > 1, then 7;(4) as a function of § is a modulus
of continuity.

3. MAIN RESULTS

Let (2, A, P) be a probability space. A fuzzy number valued function X : Q —
F(R) can be identified with the parameterized representation {(X}, X2)|0 < a <
1}. A fuzzy number valued function X is called a fuzzy random variable if for
each a € [0,1], X} and X2 are random variables as real-valued functions. If X
is a random element of the metric space (F(R),d), then it is a fuzzy random
variable. But the converse is not true. If X is CF(R)-valued, Theorem 3.1 of
Joo and Kim (2000), and Corollary 3.3 of Kim (2002) imply that X is a fuzzy
random variable if and only if it is a random element of (CF (R), d). Here we give
a direct proof.

THEOREM 3.1. Let X : Q — CF(R). Then X is a fuzzy random variable if
and only if it is a random element of the metric space (CF(R),d).

PROOF. (Sufficiency): Let X be a random element of the metric space
(CHR),d). For each o € [0,1)], let us define

fo:CF(R) = R, fi(@) =ub, i=1,2.

Then f¢ is continuous. Since X?, = fi(X), the sufficiency is proved.
(Necessity): Suppose that X} and X2 are random variables for each a € [0, 1].
For 4 € CF(R), let B((3) = {4 € CF(R) : d(,7) < €}. Then

{we Q: X(w) € B(d)}
= () {w: max (X}, (w) — v}, |, 1X2, (w) — 2 |) <€},
n=1

where {o, : n=1,2,...} is an enumeration of all rational points in [0,1]. Hence
fwe: X(w) e B.(?)} € A. Since (CF(R),d) is separable, every open subsets
of CF(R) can be represented by a countable union of closed balls of CF(R).
Thus, for each open subset O of (CF(R),d),

{wEQ:X’(w)EO}E.A.

This completes the proof. |
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A fuzzy random variable X is called level-wise continuous if it is CF(R)-
valued. By Theorem 3.1, a level-wise continuous fuzzy random variable is a
random element of the metric space (CF(R),d). Thus we can apply the notion of
tightness for random elements in a complete separable metric space to the case
of fuzzy random variables.

DEFINITION 3.1. {Xn} be a sequence of level-wise continuous fuzzy random
variables. Then {Xn} is said to be tight if for each € > 0, there erists a compact
subset K of (CF(R),d) such that

P(X, ¢ K) <€ for all n.

Now we wish to characterize the tightness for a sequence of level-wise contin-
uous fuzzy random variables. To this end, we first need to present a characteri-
zation of compact subsets of (CF(R), d). A characterization of compact subsets
of (F(R),d) was obtained by Diamond and Kloeden (1989) by using support
functions of fuzzy numbers, and that of F/(R) endowed with another metric was
done by Ghil et al. (2001). Here we restrict ourselves to the space (CF(R),d)
and give another characterizations by using the modulus of continuity 74 ().

THEOREM 3.2. Let A be a subset of CF(R). Then A is relatively compact if
and only if

sup ||4]] < oo (3.1)
a€EA
and
lim sup 7(@,4d) = 0. (3.2)

PROOF. The proof will be proceeded by similar arguments in Ghil et al.
(2001). Let A be relatively compact. Then (3.1) is trivial. Since 7(4,d) is
continuous in @ and non-increasing as é | 0, (3.2) follows from Dini’s theorem
(see Lemma 3.3 of Ghil et al., 2001).

To prove the converse, suppose that (3.1) and (3.2) hold. Since CF(R) is
complete, it suffices to prove that A is totally bounded. For a given € > 0, we
choose a positive integer k£ such that

7(4,1/k) < e for all u € A.

Let supzc4 ||@|| = M and take a partition —M =z < 1 < --- < 2, = M of
[—M, M| satisfying z; — z;_1 < € for all j. Let B be the family of fuzzy numbers
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© which there exist points a9 < a7 < -+ < a < by < -+ < by < by from
{zo,z1,...,zn} such that 9(z) = i/k at = a; or b; for some 7 and linear in
between. Then B is exactly same as the family of fuzzy numbers ¢ such that
v! and v? have the values in {zg,z1,...,2,} at i/k, i =0,1,...,k and linear in
between. Then it is trivial that B is a finite subset of CF(R).

Now we shall show that B is a 2e-net for A. Let w € A. For m =0,1,...,k,
we put

@, = Max {zj lz; < u}n/k},

b, = min {xj|mj > ufn/k},

and let ¥ is an element of B defined as above. Then

max (Iurln/k - Urln/lcl’ [U‘?n/k - vfn/ki) <€

If (m —1)/k < a <m/k, since 7(i,1/k) < ¢, we have

1 1 1
Jug — Ukl < lug — Ui+ [ty — vrln/kl <2,

1
(m—1

U k> We Obtain Jug — vg] < 2e.
By the same argument, |u2 — v2| < 2¢. Therefore, d(i, 7) < 2¢, which com-

1

. 3 - 1 . . .
and similarly for v )k Since ug is a convex combination of Uim1)/k and

pletes the proof. O
Suppose now that (3.2) holds and for some « € [0, 1],

sup max (|ul|, [u2]) < oco.
UcA

Then we can choose a positive integer k large enough that supge 4 7(@,1/k) is
finite. Then for ¢ = 1,2, since

k
lupl < Juil + ) by i — Ui 1)kl
j=1
< |ub| + k7(@,6),

we have that supgc4 ||4|| < oco. In fact, under the condition that (3.2) holds,
Supgea ||@|| < oo if and only if

sup max (Juy, |uf]) < oo.
UEA

Therefore we conclude the following corollary.
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COROLLARY 3.1. Let A be a subset of CF(R). Then A is relatively compact
if and only if

sup max (|uj|, [uf]) < oo
uEA

and

lim sup 7(@,d) = 0.

Now we are in a position to characterize the tightness of level-wise continuous
fuzzy random variables.

THEOREM 3.3. Let {X,,} be a sequence of level-wise continuous fuzzy random
variables. Then {f(n} is tight if and only if
(1) For each n > 0, there exists a A > 0 such that for all n,

P({w: | Xa()ll > A}) <m; (3.3)

(2) For each € > 0 and n > 0, there ezxists a § € (0,1) such that for all n,

P({w: (Xn(w),8) > e}) <n. (3.4)

PROOF. We first note that 7(X,(w), ) is a real-valued random variable since
(-, 8) is continuous. Suppose that {X,} is tight. For a given n > 0, we choose a

compact subset K of CF(R) such that
P(X, ¢ K) <n for all n.
By (3.1), there exists a A > 0 such that
K c{a:|al <A}

Thus (1) holds. Now for (2), let € > 0 be given. Then by (3.2), there exists a
6 € (0,1) such that
K c{a: 7(,6) <e}.

Therefore, (2) follows.
To prove the converse, suppose that (1) and (2) hold. For given n > 0, we
choose A > 0 so that

P({w: | Xn(w)] > A}) < g for all n.
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Then for each positive integer k, we choose d; so that for all n,

P({w s r(Zalw), ) 2 1/k}) < 5y

Let Ag = {a@: |la| < A} and Ax = {i: 7(4,8) < 1/k}, k=1,2... If K is the
closure of A = (72, A, then for all n,

P(X, ¢ K)< Y P(Xn¢ A) <
k=0

Since A satisfies (3.1) and (3.2), K is compact. Therefore, {X,} is tight. O

If we replace Theorem 3.2 by Corollary 3.1 in the proof of the above theorem,
we can obtain the following corollary.

COROLLARY 3.2. Let {Xn} be a sequence of level-wise continuous fuzzy ran-
dom variables and denote X, = {(X1a,X2,)] 0 < a < 1}. Then {X,} is tight
if and only if

(1) For each n > 0, there ezists a A > 0 such that for all n,

P({w : max (| Xp; ()], [ X5 (@)]) > A}) <5 (3.5)

(2) For each € > 0 and n > 0, there exists a 6 € (0,1) such that for all n,
P({w: 7(Xa(w),8) 2 €}) <.

Since CF(R) is separable and complete, a single level-wise continuous fuzzy
random variable is tight. Thus if (3.3), (3.4) and (3.5) hold except for finitely
many n, we may ensure that (3.3), (3.4) and (3.5) hold for all n by increasing
X and decreasing 6. Therefore we have the modified forms of Theorem 3.3 and
Corollary 3.2.

THEOREM 3.4. Let {Xn} be a sequence of level-wise continuous fuzzy random
variables. Then {X,} is tight if and only if

(1) hm limsup P({w: | Xn(w)|| > A}) =05

A—00 n—roo

(2) For each € >0, hmhmsup P({w: 7(Xn(w),8) > €}) =0.

n—00
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COROLLARY 3.3. Let {X,} be a sequence of level-wise continuous fuzzy ran-
dom variables. Then {X,} is tight if and only if
(1) lim limsup P({w : max (| X} (w)], | X} (w)]) > A}) = 0;

A—200 pooo

(2) For each ¢ >0, limlimsup P({w: (X (w),8) > e}) =0.

|
620 nooo -

As a final result, we give a sufficient condition for (2) of Theorem 3.3.

THEOREM 3.5. Let {X,,} be a sequence of level-wise continuous fuzzy random
variables. Suppose that for each € > 0 and n > 0, there exists a § € (0,1) such
that for each a € [0,1],

P({w : max [Xyll(a-q-d) (w) - Xéa(w% Xr%a(w) - X72p,(a+6) (w)] 2 6}) < 677a
for all n. Then condition (2) of Theorem 3.3 holds.
To prove the above theorem, we need the following lemma.

LEMMA 3.1. If0=oap<a; < - <ar=1 and minyc;<,—1(aj — aj_1) >4,
then for each @ € CF(R), we have

1 2 2

~ 1
7(1%,0) < 2 max max {uaj —Uq, ;) Ug,_, — Ug; |-

1<5<r
PROOF. Let M = maxj<; max{u1 — ul w2 —u? } Ho,_ 1 <a<
. 1<jgr a; aj—17 oy a; 1 il =
a+6 < aj, then
1

1 1 1
Ugys — Uy S Up; — Ug;_, <M.

Hoaj1 <a<oj <a+6 < ajq, then
1 1 1 1 1 1
Ugys — Ug = (“aj+1 - uaj) + (uaj - uaj_l) <2M.
In any case, uy s — Uy < 2M. Similarly, u3 — u2,s < 2M, and so we have
7(,0) < 2M. O

PROOF OF THEOREM 3.5. Let us denote by | A| the largest integer not greater
than A. If we denote [1/§] = r and take aj = jd for j =0,1,...,r—1land o, = 1.
Then by Lemma 3.1,

P({w: 7(Xn(w),d) > 2¢})

S Z P({(L) : 112.7.3’2{7‘ max [Xiaj (UJ) - X%.aj_l (CIJ), Xzaj_l(w) - X?%a]‘ (w)] Z 6})
j=1 ==

<rén <,

which completes the proof. O
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