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THE CENTRAL LIMIT THEOREMS FOR THE
MULTIVARIATE LINEAR PROCESS GENERATED BY
WEAKLY ASSOCIATED RANDOM VECTORS!

TAE-SuNG KiMm! AND MI-Hwa Ko?

ABSTRACT

Let {X;} be an m-dimensional linear process of the form X; = Z?’;O A;
X Zy_;, where {Z,} is a sequence of stationary m-dimensional weakly asso-
ciated random vectors with EZ; = O and E||Z||*> < co. We prove central
limit theorems for multivariate linear processes generated by weakly asso-
ciated random vectors. Our results also imply a functional central limit
theorem.
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1. INTRODUCTION

Notions of positive dependence for collections of random variables have been
much studied in recent years. The most prevalent positive dependence notion is
that of association. A finite collection {Y;, 1 < 7 < m} of random variables is
said to be associated if for all coordinatewise nondecreasing functions f,g : R™ —
R, Cov(f(Y1,---,Ym),9(Y1,...,Yy)) > 0, where the covariance is defined. An
infinite collection of random variables is associated if every finite subcollection
is associated. This positive dependence notion was first defined by Esary et al.
(1967). Associated sequences are widely encountered in applications: e.g. in
reliability theory, in mathematical physics and in percolation theory (cf. Barlow
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and Proschan, 1975; Newman, 1980; Cox and Grimmett, 1984). Under some
covariance restrictions a number of limit theorems have been proved for associated
random variables. Newman (1980) proved the central limit theorem, and Newman
and Wright (1981) extended this to a functional central limit theorem. Burton
et al. (1986) defined weakly associated random vectors and proved a functional
central limit theorem for such sequences. This was achieved by an extension of
the Cramer-Wold device to suit the special needs of weakly associated vectors.
And these results were extended to random vectors with values in a separable
Hilbert space (see Burton et al., 1986).

Let X;, t =0,%1,..., be an m-dimensional linear process of the form
oG
X =Y AjZs; (1.1)
=

defined on a probability space (2, 4, P), where X;, t = 0,%1,..., is a sequence
of strictly stationary m-dimensional random vectors with mean @ : m x 1 and
positive definite covariance matrix I' : m X m. The class of linear processes
defined in (1.1) contains stationary multivariate autoregressive moving average
processes(MARMA) and a popular approach to the development of asymptotics
for time series has been the use of limit theorem for dependent random variables
(see Brockwell and Davis, 1990). Fakhre-Zakeri and Lee (1993) established a
central limit theorem for multivariate linear process generated by #id random
vectors and they also derived a functional central limit theorem for multivariate
linear process generated by martingale difference random vectors in 2000.

In this paper we prove the central limit theorem for stationary multivariate
linear processes generated by weakly associated random vectors. We also extend
this to a functional central limit theorem, which generalizes, to the stationary
multivariate linear process, the functional central limit theorem of Burton et al.
(1986) on the sum of weakly associated random vectors.

2. RESULTS

DEFINITION 2.1 (Burton et al., 1986). A sequence {Z;, t > 1} of m-dimens-
tonal random vectors is said to be weakly associated if for all coordinatewise non-
decreasing functions f : R"™ — R and g : R*™ — R and for any permutation
of the positive integers we have

Cov(f(Znrys- > Znin))s 9(Zr(ns1)s - - s Ln(nk))) = 0, (2.1)
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whenever this covariance is defined.

LEMMA 2.2 (Newman and Wright, 1981). Let {Y1,...,Y,} be weakly asso-
ciated random variables with EY; = 0, EYi2 < 0o. Then

E <1r<n£1x Y14+ Yk|2) <E(Yi+--+ Y, (2.2)
PROOF. See the proof of Theorem 2 of Newman and Wright (1981). O

LEMMA 2.3. Let {Z¢, t > 1} be a strictly stationary sequence of weakly as-
sociated m-dimensional random wvectors with E(Z;) = 0, E||Z4*> < oo. Let

Xt = z?il Ath_j, Sk = Zle Xt, Xt = ( ?‘;1 Aj)Zt and Sk = Zle Xt. As-

sume

ZHA | <oo and ZA # Omxm (23)
7=1
where for any m X m, m > 1, matriz A = (a;;), ||4]| = X, Z;n:l la;;| and

Omxm denotes the m x m zero matriz and assume

o m
E|Z:|>+2) Y E(Z1Zy) = 0” < oo (2.4)
t=2 i=1
Then
~1/2 S Sl —
n @?;‘n“sk Sll = 0p(1).

ProoF. First observe that

k k—t o0
Sk=> )Zt+2( > 4)z
t=1 j=0 t=1  j=k—t+1
k t—1 k 00
:Z( Zt ])+Z( Z A])Zta
t=1 j=0 t=1 j=k—t+1
and thus
_ k 00 k 00
Si-Sk=-Y (X az)+> (X 4)z
t=1 j=t t=1 j=k—t+1
=1, + I (say).
To prove

“1Y2 max L] = 0,(1), (2.5)
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note that
2

k00
— i)
n~'E max E E Al
1<k<n -
- - t=1 j=t

co jAk 2
=n"! E max E E Aj Ly
1<k<n -
- j=1t=1

Ak 2\ 1/2

> 2
t=1

by Minkowski inequality

00 . 1/2
YAY
<o? { ol (125)
Jj=1

00
<t A 4] | B max
= 1<k<n

by (2.2), (2.3) and (2.4). By the dominated convergence theorem the last term
above tends to zero as n — oco. Thus (2.5) is proved by Markov inequality.

Next, we show that
~1/2 L = 0,(1). 2.
nV? max 1] = 0p(1) (2.6)
Write I, = II; + I, where
II = A1Zk+ As(Zg + Zg—1) + -+ A (Zg + -+ - + Z1)

and
II) = (Agpy + Ao +++) (Ze+ -+ + Zy).

Let p, be a sequence of positive integers such that
pn — 00 and p,/n—0 as n — co. (2.7)

Then,

oo
i/ < . ) —1/2
n " max Ik < (,;“Al” V2 max (1Zot o+ Zal

§ A-) -1/2 Tt 4+ 7,
4(1; i) 7% max 12+ -+ 2]

= 0,(2) + 0, ( 3 14at)

1>Pn
= op(1)
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by (2.3), (2.4) and (2.7).

It remains to prove that

Y, & n~1/2 max ||| = 0p(1).

To this end, define for each [ > 1

Iy = B1Zg + Bo(Zg + Zgg—1) + - - + Be(Zy + - - - + Zy),

where

Ag, k<l
By = _
* {®me, k>l

Let Yy, = n~1/2 maxj<k<pn | II1;||. Clearly, for each I > 1,

Yo = 0p(1). (2.8)
On the other hand,
k 2
(Yo — Y5)? < B Z YZk+ - + L—iv1)
< Al -1z z ’
< max (i; lAill - 12+ -+ + Z-isall)
< ; i1l
< (Z JAd) e s 2+ + Zioia
<4(Xua ”) max |21+ + 2],
>l

From this result, (2.3) and (2.4), for any 6 > 0,

lim lim sup P(|Y,; — Ya|? > §)

l—ocon—00
12 -1 112
< ll_lglonli}m sup 46~ (;HAlH ) n E11—<1-1]a.SXHI|Z1+ + Z;|
< 46710? i |12} =o0. .
<457l lgrgo@n&n) 0 (2.9)

In view of (2.8) and (2.9), it follows from Theorem 4.2 of Billingsley (1968, p. 25)
that Y;, = 0,(1). This completes the proof of Lemma 2.3. O
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LEMMA 2.4 (Burton et al., 1986). Let {Z;, t > 1} be a strictly stationary
weakly associated sequence m-dimensional real random wvectors with E(X;) =
O, E||Xi||? < oo. Define, for u € [0,1],n >1

[nu]
Walu) =n"12% "7, (2.10)
t=1
If (2.4) holds then, as n — oo
W, = B™ (2.11)

w . . - . . B
where — indicates weak convergence, and B™ is an m-dimensional Wiener
process with covariance matriz T' = [oy;],

o0
ok = E(ZwZ1;) + Y _{E(Zw2y) + E(Z1;Z4)}. (2.12)
t=2
PROOF. See the proof of Theorem 2 of Burton et al. (1986). O

REMARK 1. In Lemma 2.4 by letting u = 1 we have
n
n~1?% "7, 2 N(O,T), (2.13)
t=1

that is, {Z,} satisfies the central limit theorem.

THEOREM 2.5. Let {Z;, t > 1} be a strictly stationary weakly associated
sequence of m-dimensional random vectors with E(X;) = O, E||X4||? < 0o and
{Xt} an m-dimensional linear process defined in (1.1). Set S, =37 X¢(So =
0), S, = PV X¢ as in Lemma 2.3. If (2.3) and (2.4) holds then

n—l/zgn £> N(O,T) as n— oo, (2.14)
where T = ( ;‘;1 AT ??—_1 Aj).

ProOF. First note that n~1/2§, = n-1/2 (32521 Aj) 2271 Z:  and that
n-1/2§, 2 N(O,T) according to Remark 1. Hence, n~1/25, -2 N(Q,T)
follows by applying Lemma 2.3 and Theorem 4.1 of Billingsley (1968). 0O

We now introduce another central limit theorem.
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THEOREM 2.6. Let {Z, t > 1} be a strictly stationary weakly associated
sequence of m-dimensional random vectors with E(Zs) = Q, E||Z4|*> < 0o and
{X¢} an m-dimensional linear process defined in (1.1). If (2.4) and

> 14l < oo (2.15)

i=1 j=i+1

hold, then n=1/2§, 25 N(Q,T) as n — oo, where T = ( S AP, 4)

PROOF. Letting A; = 3252, 4; and Y; = Y°3°) A;Z; 4, which is well de-
fined since Y .o || Ail| < 0o by (2.15), we have

—(ZA)Zt—AoZﬁZ ATy

o0
= ( Ai)Zt + Y1 — Yy
i—0

which implies that
o] n
Sa= (3 A4) Y Zi+ Yo ¥
1=0 t=1

According to Remark 1 we have n~1/25% 7, —» N(O,T) as n — oo. Hence

using this result on ( A;) 341 Z, this theorem is proved if
Y
\/—% P,0 as n— . (2.16)
To prove (2.16) it is sufficient to show that
Yn
N — O a.s. asn = oo. (2.17)

But (2.17) follows from the fact that for any € > 0

>p (ﬁ— > e) = ZP(]YO,A > /ne) < oo
n=1 n=1
for all j, where Y, ; denotes the j** component of Y. O

REMARK 2. If 3°2° (i]|]A;][)% < oo the condition (2.15) is satisfied since

ZHA1|2<Z( S all)” <4 Glad)?
i=0

=0 j=i+l
See Theorem 3.31 of Hardy et al. (1952).



18 TAE-SUNG KIM AND MI-HwA Ko

Finally, we derive the following functional central limit theorem.

THEOREM 2.7. Let {Zy, t > 1} be a strictly stationary weakly associated se-
quence of m-dimensional random vectors with E(X;) = O, E||X1||? < oo and let
{X;} be an m-dimensional linear process defined in (1.1). SetS, =3 1 X4(So =
0), and define for u € [0,1], n > 1, the stochastic process &, by

(nu]
€n(u) = 172y =72 X, (2.18)
t=1

If (2.8) and (2.4) holds then
bn —> W™
where = indicates weak convergence, and W™ is an m-dimensional Wiener

process with covariance matriz T = (3532, Aj)T (3272, A;) and T = [oy;] as in
(2.12).

PROOF. Let £, be the same as &, defined in (2.18) with S[nu] in place of
Sty (i-e., X; in place of X¢)
[nu]

G = (34 2( 3 2,).
=0

1

i}

Then &, — W™ follows from Lemma 2.4. Applying Lemma 2.3 and Theorem
4.1 of Billingsley (1968) we obtain &, —— W™, so Theorem 2.7 is proved. O

DEFINITION 2.8 (Burton et al., 1986). Let {Z;} be a sequence of random
variables taking values in separable Hilbert space (H, <,>). {Z;} is called weakly
associated if for some orthonormal basis (e, k > 1) of H and for any m > 1 the
m-dimenstonal sequence

(< Ztael >y < Ztaem >)7 t2> la
is weakly associated.

LEMMA 2.9 (Burton et al., 1986). Let {Z;} be a strictly stationary sequence
of H-valued random variables which are weakly associated. Define for u € [0, 1],

(rnu]
Sp(u) =n~1/? Z 7.
t=1
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If E(Zy) = O and 02 = E||Z1]|? + 2.2, E(< Z1,Z; >) < oo, then S, — W,
where W is a Wiener process on H with covariance structure

F(f’g) = E(< faZI >< gazl >)

0
+Z{E(< frZ1>< 9,2y >) + E(< g,Z1 >< [, Z >)}.
t=2

PROOF. See the proof of Theorem 3 of Burton et al. (1986). (W

THEOREM 2.10. Let {Z;} be a strictly stationary sequence of H-valued ran-
dom variables which are weakly associated and let X; = Z?io AiZy_j;. Define, for
uw€el0,1], n>1,

[nu]

Wa(u) =n"2> "X, (2.19)

t=1
If EZ; = O and 02 = E||Zy)? + 2%, E(< Z1,Z; >) < oo, then Wy, = W
where W is a Wiener process on H with covariance structure (372, A;)T(3572,

A;Y, and
o0

F(fvg) = E(< f7Z1 >< g7Z1 >)+Z{E(< faZI >< Q,Zt >)
t=2
+E(< g,Zl >< faZt >)}

ProoF. Let Wn be the same as W, defined in (2.19) with Xt in place of X;

Wa(u) =n" 2y X, = (iAj)n—l/z( Zt), u € [0,1]. (2.20)
t=1 j=0

t=1

Then W,, — W follows from Lemma 2.9 (Theorem 3 of Burton et al., 1986).
Applying Lemma 2.3 and Theorem 4.1 of Billingsley (1968) we obtain W, W,
so Theorem 2.9 is proved. 0

REMARK 3. In Theorem 2.9 letting u = 1 we obtain a central limit theorem
for a multivariate linear process generated by a strictly stationary sequence of
H-valued random variables which are weakly associated random vectors.
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