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CONFIDENCE CURVES FOR A FUNCTION OF
PARAMETERS IN NONLINEAR REGRESSION'

MYUNG-WO0OK KAHNG!

ABSTRACT

We consider obtaining graphical summaries of uncertainty in estimates
of parameters in nonlinear models. A nonlinear constrained optimization
algorithm is developed for likelihood based confidence intervals for the func-
tions of parameters in the model. The results are applied to the problem of
finding significance levels in nonlinear models.
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1. INTRODUCTION
The standard nonlinear regression model can be expressed as
yi = f(xi,0) + €, 1=1,2,...,n,

in which the i* response y; is related to the g-dimensional vector of known
explanatory variable x; through the known model function f, which depends on
p-dimensional unknown parameter vector 8, and ¢; is error. We assume that f is
twice continuously differentiable in @, and errors ¢; are independent, identically
distributed normal random variables with mean 0 and variance ¢2. In matrix

notation we will write

Y =1(X,0) + ¢,
where Y is an n-dimensional vector with elements y1,¥ys,...,%,, X is an n X q
matrix with rows x7,x3,...,x%, € is an n-dimensional vector with elements

€1,€,...,6, and £(X,0) = (f(x1,0), F(x2,0), ..., f(xn,0))T. The least squares
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estimate of @, denoted by 6, minimizes the residual sum of squares S(0) =
S {y; — f(x;,8)}?, and maximizes the likelihood function. Let the p-dimensional
vector parameter @ be partitioned in the form 8 = (67 ,6,)T where 6, is a single
parameter which is of primary interest, and 6; is a (p — 1)-dimensional nuisance
vector. Define V = V(8) = 9f/007 to be the matrix of first derivatives and
V = V(0). The problem of interest is to form confidence regions for 6;.
Probably the most common procedure for confidence region for the subset
parameters 0, is based on the large-sample normality of @ (Seber and Wild,
1989, pp. 25, 202). An approximate 100(1 —a)% confidence region for 8s is given

by
Lo

where $22 is the appropriate diagonal element of (VTV)~! and s2 = 5(8)/(n—p)
is the usual unbiased estimator of o2. This confidence interval is called the Wald

162 = 62l VTS < taln =) | (L.1)

interval or the linearization interval.

An alternative procedure for defining confidence regions and confidence in-
tervals is based on the likelihood ratio statistic. Let S(@) = S(64,62). Standard
asymptotic arguments suggest that the confidence region for 6, is

{6:] V/(50162),60 - 58)}/5* < taln—p) b (1.2)

where @ (,) denotes the (p — 1)-dimensional vector valued function that mini-
mizes 5(8) over @ for 05 fixed. As suggested by Beale (1960, p.53) and confirmed
by Donaldson and Schnabel (1987), this regions may be preferable when intrinsic
curvature (Bates and Watts, 1980 and 1981) is small.

Although Wald interval (1.1) and likelihood ratio confidence interval (1.2) are
asymptotically the same for the nonlinear models and exactly the same for linear

models, they can be quite different for small samples with nonlinear models.
As noted by Donaldson and Schnabel (1987), confidence interval (1.2) has the
coverage rate closer to the nominal value and thus is less affected by curvature
than is Wald interval. However, it has computational disadvantages. Confidence
intervals using likelihood method can be disjoint and unbounded, and this method
is relatively computationally expensive.

2. CONFIDENCE CURVES FOR A SINGLE PARAMETER

Cook and Weisberg (1990) give the graphical alternative to likelihood and
Wald confidence intervals for a component of the parameter vector 8. The reason
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for using confidence curves is that likelihood intervals can have a different shape
for each significance level 1 — a. Wald intervals are always symmetric, and if we
have a 95% interval, we can always get the 90% and 99% intervals in a simple
way. With the likelihood intervals, this is not so; if we have the 95% interval,
we cannot say much about the 90% or 99% interval. Consequently, a graphical
summary that does not depend on level is desirable.

The confidence curve includes two curves — a likelihood confidence curve and
Wald confidence curve. The likelihood confidence curves are the set of points
defined by

{ V18(81(6,),62) — 5(8)}/s on the horizontal axis, @.1)

6o on the vertical axis.

This is a modification of the graphical summary of the standard profile log-
likelihood which has 6, on the horizontal axis and S(81(62),62) on the vertical
axis. The plot (2.1) will be curves, with the amount of curvature giving informa-
tion about the nonlinearity of the model. To this plot, two straight lines passing
through (0, ;) with slope £se(f;) are added. These two straight lines represent
the Wald interval. At any point on the horizontal axis of the confidence curve
plot, the interval between the upper and lower curves provides a confidence in-
terval for 8, for some level of 1 — . The confidence level can be determined from
the calibrating distribution for either the Wald or likelihood procedure, which,
in the scale of the plot, is ¢(v), where s has v degrees of freedom. If ¢;1(u) is
the inverse of the ¢ cumulative distribution fuction with v degrees of freedom
evaluated at u, then the confidence level at a point along the horizontal axis is
1= 26,1 (/{5(81(62),62) — S(8)}/52).

The Wald and the likelihood regions are tangent at the maximum likelihood
estimate . If the likelihood is exactly quadratic, that is, if the log-likelihood
is exactly normal, then the likelihood curves are same as the Wald curves (two

straight lines). Non-normality is reflected in the likelihood confidence curves
failing to be straight.

Computation of confidence curves requires a sequence of least squares fits
to find 91(02) for selected values of 8. Beginning at the maximum likelihood
estimate 0y, points on the curve are evaluated at 6, + Ap. To determine the
corresponding value of (2.1), we must find @, (f+A,), which requires the iterative
procedure that use the same routines that were used to find the full maximum
likelihood estimate @. Once 8;(6; + As) has been computed, the next 91(02)
can be found by taking 6+ Ag as the starting point, and iterations as described
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above. As Cook and Weisberg (1990) noted, we would like to choose the step
size Ao as large as possible subject to: providing a visually satisfying trace of
the curve, allowing reasonably accurate linear interpolation between points, and
ensuring reliable algorithm for convergence.

To satisfy the above requirements they proposed the dynamic step size which
depends on the shape of the confidence curve at the plotting point of #,. With this
dynamic step size, we have larger step sizes when the confidence curve is nearly
linear, and smaller step sizes when the curve is nonlinear. Cook and Weisberg
(1990) discussed that their methodology can obtain the confidence curve for the
parameter subsets but it has limitation for a function of parameters. The method
in the next section overcomes this limitaion.

3. CONFIDENCE CURVES FOR A FUNCTION OF PARAMETERS

3.1. Introduction

Suppose that ¢(8) is a continuous, twice differentiable and invertible function
of 6 and is of particular interest. Confidence intervals for the function ¢(8) can

be obtained as in Section 2 for a special case ¢(0) = 6;, i = 1,2,...,p, by using
the large-sample normality of ¢(@) and the likelihood ratio statistic for testing
Hy:c(0) = ¢.

By the large-sample normality, the maximum likelihood estimate of ¢(@) is
¢(8) with standard error se[c(0)] = ¢'(8)T(VTV)~1(8) where ¢ (8) = 0c(8)/00
evaluated at 6. Using these, we can construct the Wald confidence interval for
¢(@) corresponding to (1.1) having the form

{#] 10=d1/s/e@r@™¥)7¢@) < tatn-p) }

where ¢ = ¢(8). The likelihood confidence interval corresponding to (1.2) is

{ 6] Visamo) -5@)/52 < taln-1) }

where mg(¢) denotes the p-dimensional vector valued function that minimizes
S(0) over 8 for given ¢(8) = ¢.

Following Cook and Weisberg (1990) and generalizing Section 2, we will con-
sider constructing confidence curves for the function of ¢(8). In this plot, ¢ is on
the vertical axis and the plotted point corresponding to ¢ on the horizontal axis

is of the form \/ {S(mg(¢)) - 5(6)}/s%. To this plot, two straight lines passing
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through (0, ¢) with slope +se(¢) are added. These straight lines represent the
Wald interval.

Beginning at ¢y = ¢ = ¢(), we need a series of values ¢ and mgp(4) to
construct the confidence curve. Thus computation of the confidence curve is a
sequence of least squares fits that obtain the maximum likelihood estimates of @
for selected values of ¢. When we construct a confidence curve for a component
of the parameter vector, we compute the least squares estimate of 8 with one
parameter as a fixed value in the model. But in the case for the function of 8, we
are required to solve a constrained optimization by computing the least squares
estimate 6 subject to the constraint that ¢(8) is some fixed value ¢. This is called
the nonlinear constrained optimization problem or nonlinear programming. This
problem can be expressed as finding a local solution of mg(¢):

minimize S(6),
{subject to c(8) = ¢.

We solve this problem using Lagrange multipliers in Section 3.2. Although
we can sometimes compute a series of ¢ and mg(¢) using the method of repa-
rameterizing models with ¢(8) as a single parameter, this is not always possible.
Suppose that we have mg(¢o) and S(mg(¢g)) for some value ¢ of c(8), then the
next point on the curve is evaluated at ¢ = ¢ + Ay, where Ay is a selected step
size. We discuss the dynamic step size in Section 3.3.

3.2. Lagrange multipliers

Suppose that initially we just wish to minimize an unconstrained function
S(#). Many minimization methods are based upon trying to locate a point 8*
such that

S'(6*) =0, (3.1)

where S’(0) = 9S(0)/80. In general, this point is referred to as a stationary
point with respect to @ of function S(8). It is well known that (3.1) is a necessary
condition for a minimum. A value of 8 for which S’(@) = 0 does not necessarily
minimize the function S(0); it may maximize the function or be a saddle point,
but under certain conditions it will definitely minimize S(@) at least locally. One
such condition arises if the function S(@) is convex. The function S(8) is said
to be convex over a set @ if its matrix of second partial derivatives is positive
semi-definite everywhere. In other words, d7.5"(8,)d < 0, for all vectors 8y € @,
and d # 0. If S(8) is a convex function, any point where the derivative vanishes
must be a minimum.
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The problem becomes more difficult if we have to consider constraints. Sup-
pose that we want to minimize the function S(@) subject to the constraints

c(6) = ¢. (3.2)

If any point O satisfies the constraint (3.2), it is said to be a feasible point. We
may be able to overcome the problem by using the constraints to solve for one
variable in terms of others. If this can be done it reduces the dimension of the
problem and the constraint will actually make things easier, but in general we
cannot make this simplification.

There have been many contributions to the theory and application of con-
strained optimization. One approach is to solve the problem using Lagrange
multipliers (Fletcher, 1987, p.195). Since the function c¢(6) must equal ¢, the
problem is unaffected if we replace the object function S(€) to be minimized by
the Lagrangian function

L(6) = 5(6) — Ac(0) — 4] (3-3)

for any value of the quantity A, which is called the Lagrange multiplier. The
Lagrangian function £(8) is often written as £(8, \) to emphasize its dependence
on both @ and A.

The Lagrange multiplier method is useful in that if we can find the value of A
such that the vector @ where S(@) is minimized happens to satisfy the constraint
c(@) = ¢, then we will also have solved our original constrained problem. This is
obvious since the Lagrangian function is reduced to our original object function
5(0) if the constraint is satisfied. Thus we try to find vector mg(¢) and value
m(¢) which minimize (3.3) and also satisfy constraint (3.2). From the earlier
discussion about minimization we know that a necessary condition for a minimum
is 3L/0® = 0, where ¥ = (87, \)T. In other words, we need to solve the following
System

{ 5'(8) — A¢(8) = 0,
c(8) = ¢.

We now have p + 1 equations for the p + 1 unknown @ and A which we may

(3.4)

possibly be able to solve.

A direct and efficient approach for solving (3.4) is to iterate on the basis of
certain approximations of the function £(@, A). For this problem, the method can
be explained as Newton’s method applied to nonlinear equations. The Lagrangian
function is defined in terms of variables @ and A, so a feature of the resulting
method is that a sequence of approximations O(k), M) to both solution vector
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mg(¢o) and the optimum Lagrange multiplier my(¢) are generated. That is,
given 0, A*) the new points 8*+1), A1) are determined by setting @*+1) =
0™ 1+ A@ and A*+D) = AK) 4+ A,

As usual a Taylor series for 0L/0% about 6%) A\(%) gives

Al
1k (k) = (%) (k) ng(k) (k)
£0% + A0, 2% + AN) = £/(6® B 4 £7(9®), ) )[M]
where
oL 0*L
L% A\F)y = == , LR 2Ky = i
( ) ow \I,:(g(k),)‘(k)) ( ) 8\1'8\IJT lIl:(g(k),)\(k))

Neglecting higher order terms and setting the left hand side equal to zero
gives the iteration

Al

(k) (k)
2%, )[M

] = —L'(0® \®)y, (3.5)

This can be solved to give corrections A@ and A), and is Newton’s method for the
stationary point problem. Obtaining £'(6%) A®)) £7(0®) A(*)} from (3.3) and
substituting into (3.5) gives us the following system after some rearrangement:

£k k)Y 1AG —§'k) 4 (k) )\ (k)
| =)

—c/(k) 0 AN
where
oL oL
k) — ptegle)y — 2= mk) _ ptog(k)y —
L L£(6\) 90 |g_g®)’ L L"(6) 6060T‘e:o<k)’

Sk — g'(gkR)), "k = g"(9F)), k) = ¢(gR)), B) = ¢/ (9(K)),

It is more convenient to write Ak+D) = X(%) 4 AX and A®) = A8, and to
solve the equivalent system

Ell(k) —c'(k) A _Sl(k)
oo 7o )= @9
to determine A®) and A**1, Then 8%+ is given by
0(k+1) — e(k) +A(k+1). (37)

This method requires initial approximations 1) and A(!) and uses (3.6) and (3.7)
to generate the iterative sequence (8(F), A(¥)),
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First order necessary conditions (Fletcher, 1987, p. 200) for a feasible point 8
to solve this problem are that there exist Lagrange multipliers A such that

S'(0) = A (). (3.8)

It is also possible to look at second order effects caused by feasible changes in the
solution. Second order necessary conditions (Fletcher, 1987, pp. 207-212) are
that the Lagrangian function has nonnegative curvature for all feasible directions,
that is, d7L"(0)d > 0 for all d : ¢(6)Td = 0. More details of the theory of
nonlinear programming can be found in Gill et al. (1981), Luenberger (1984)
and Fletcher (1987).

3.3. Dynamic step size

We consider, once again, the dynamic step size for the confidence curve for
the function of parameters. A likelihood confidence curve consists of the set of
two-dimensional points

mol =[] @

where G(¢) = S(mg(¢)) — S(#). Suppose P(gy) is a current plotting point, then
a curvature of a plane curve (Stoker, 1969, p.26) at P(¢o) is

P($) - |

_IPPYPUPY PO— P11 _ P
P2+ P (PP~ (@ PF

C (3.10)

where P’ = P'(¢) and P” = P"(¢) are the first and second partial derivatives,
OP/0¢ and 8*P/0¢? evaluated at ¢, respectively.

Cook and Weisberg suggest choosing step size inversely proportional to C' at
P(¢o). We have the invariant step size as follows:

_ i tan(n)
20=C TP

and applying (3.10), we have

A2 42 Go @TL"-1E))
A8 =2 Go (ch" L5 ch)|

Ag = tan(n)y/2 Go (&7 £7-127) (3.11)

where ¢ = ¢/(8) and £" = L£"(8).
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PN

The first step size cannot be determined dynamically as (3.11) since at P(¢),
Go = ¢ = 0 and Ag = my(@) = 0. Thus we have to set the first step size. A
small fraction of se(¢), such as 0.5 ~ 5% of se(¢) works well. Also we need to
determine a user selected angle 7; values between 5 and 10 degrees used by Cook

and Weisberg (1990) seem to be reasonable in this case.

4. EXAMPLES

We now demonstrate the above methodology by using the data and the model
taken from Clarke (1987). The data examines the weight of cut grass as a function
of the weeks after commencement of grazing in a pasture for 13 cases. The
proposed model is the Mitcherlitz equation, f(z,8) = 65 + 02 exp(6:1z).

Suppose that function of the parameters ¢ = 63/6; is of particular interest.
To compute a confidence curve for ¢, we need to compute a series of least squares
estimates of @ subject to the constraint that ¢ is fixed. Using the procedures
of Section 3 and dynamic step size (3.11), the confidence curve for ¢ is given in
Figure 4.1.

The likelihood confidence curves are curved, indicating nonlinearity, and the
95% confidence interval for ¢ is [—0.1474, 0.6637) = [ — 0.5297, ¢ + 0.2814],
which is very different from the symmetric Wald interval, [0.009798, 0.7549] =
[(;3 + 0.3725]. This asymmetry of the likelihood confidence curves indicate that
the linear approximation seems to be misleading.
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FiGuRE 4.1 Confidence curve for 05/8;
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