참고문헌
- Appl. Environ. Microbiol. v.42 Effect of nitrogen source on the end products of naphthalene degradation Aranha R. M.;L. R. Brown
- Appl. Microbiol. Biotechnol. v.20 Degradation of phenol by polymer-entrapped microorganisms Bettemann H.;H. J. Rehm https://doi.org/10.1007/BF00270587
- Biotechnol. Appl. Biochem. v.10 Multistep reactions with immobilized microorganisms Bisping A.;H. J. Rehm
- Biotechnology Immobilized cells Brodelius P.;E. J. Vanddamme;J. F. Kennedy (ed.)
- Topics in Enzyme and Fermentation Techonology Developments in immobilized cells and their applications Cheetam P. S. J.;A. Wiseman (ed.)
- Manual of Industrial Microbiology and Biotechnology Methods of cell immobilization Chibata I.;T. Tosa;T. Sato;A. L. Demain (ed.);N. A. Solomon (ed.)
- Eur. J. Appl. Microbiol. Biotechnol. v.11 Comparative stabilization of biological photosystems by several immobilization procedures Cocquempot M. F.;B. Thomasset;J. N. Barbotin;G. Gellf;D. Thomas https://doi.org/10.1007/BF00505866
- Microbial Degradation of Organic Compounds Microbial degradation of aromatic hydrocarbons Gibson D. T.;V. Subramanian;D. T. Gibson (ed.)
- Chimicaoggi v.1 Immobilized photosynthetic membranes and cells for the production of fuels and chemicals Hall D. O.;K. K. Rao
- Biotechnol. Prog. v.9 Large-scale production of k-carrageenan droplets for gel bead production. Theoretical and practical limitations of size and production rate Hunik J. H.;J. Tramper https://doi.org/10.1021/bp00020a011
- Bioprocess Eng. v.8 A comparative study of gel entrapped and membrane attached microbial reactors for biodegrading phenol Lakhwala F. S.;B. S. Goldberg;S. S. Sofer https://doi.org/10.1007/BF00369258
- Pimelobacter sp.Appl. Microbiol. Biotechnol. v.41 Biodegradation of pyridine by freely suspended and immobilized Lee S. T.;S. K. Rhee;G. M. Lee https://doi.org/10.1007/BF00167280
- Indian J. Expt. Biol. v.33 Degradation of naphthalene by Pseudomonas strain NGK1 Manohar S.;T. B. Karegoudar
- Appl. Microbiol. Biotechnol. v.49 Degradation of naphthalene by cells of Pseudomonas sp. strain NGK1 immobilized in alginate, agar and polyacrylamide Manohar S.;T. B. Karegoudar https://doi.org/10.1007/s002530051247
- Appl. Microbiol. Biotechnol. v.55 Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam Manohar S.;C. K. Kim;T. B. Karegoudar https://doi.org/10.1007/s002530000488
- Immobilized Cells and Organelles. CRC Immobilization methods Mattiasson B.;B. Mattiasson (ed.)
- Enzyme Microbiol.Technol. v.25 Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida Mordocco A.;C. Kuek;R. Jenkins https://doi.org/10.1016/S0141-0229(99)00078-2
- J. Environ. Sci. Health v.A36 no.6 Degradation of dimethylphthalate by cells of Bacillus sp. immobilized in calcium alginate and polyurethane foam Niazi J. H.;T. B. Karegoudar
- World J. Microbiol. Biotechnol. v.18 Degradation of 2-methylnaphthalene by free and immobilized cells of Pseudomonas sp. strain NGK1 Sharanagouda U.;T. B. Karegoudar https://doi.org/10.1023/A:1014943629720
- Microbiol. Release v.1 Use of alginate and other carriers for encapsulation of micobial cells for use in soil Trevors J. T.;J. D. Van Elas;H. Lee;L. S. Van Overbeek
- J. Bacteriol v.147 Plasmid and chromosome-mediated dissimilation of naphthalene and salicylate in Pseubomonas putida PMD-1 Zuniga M. C.;D. R. Durham;R. A. Welch